The Ebola virus VP35 protein functions as a type IIFN antagonist

被引:381
作者
Basler, CF
Wang, XY
Mühlberger, E
Volchkov, V
Paragas, J
Klenk, HD
Garcia-Sastre, A
Palese, P
机构
[1] CUNY Mt Sinai Sch Med, Dept Microbiol, New York, NY 10029 USA
[2] Univ Marburg, Inst Virol, D-35037 Marburg, Germany
关键词
D O I
10.1073/pnas.220398297
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An assay has been developed that allows the identification of molecules that function as type I IFN antagonists. Using this assay, we have identified an Ebola virus-encoded inhibitor of the type I IFN response, the Ebola virus VP35 protein. The assay relies on the properties of an influenza virus mutant, influenza delNS1 virus, which lacks the NS1 ORF and, therefore, does not produce the NS1 protein. When cells are infected with influenza delNS1 virus, large amounts of type I IFN are produced. As a consequence, influenza delNS1 virus replicates poorly. However, high-efficiency transient transfection of a plasmid encoding a protein that interferes with type I IFN-induced antiviral functions, such as the influenza A virus NS1 protein or the herpes simplex virus protein ICP34.5, rescues growth of influenza delNS1 virus. When plasmids expressing individual Ebola virus proteins were transfected into Madin Darby canine kidney cells, the Ebola virus VP35 protein enhanced influenza delNS1 virus growth more than 100-fold. VP35 subsequently was shown to block double-stranded RNA- and virus-mediated induction of an IFN-stimulated response element reporter gene and to block double-stranded RNA- and virus-mediated induction of the IFN-P promoter. The Ebola virus VP35 therefore is likely to inhibit induction of type I IFN in Ebola virus-infected cells and may be an important determinant of Ebola virus virulence in vivo.
引用
收藏
页码:12289 / 12294
页数:6
相关论文
共 52 条
[1]   Symptomless infection with Ebola virus [J].
Baxter, AG .
LANCET, 2000, 355 (9222) :2178-2179
[2]   REVERSAL OF THE INTERFERON-SENSITIVE PHENOTYPE OF A VACCINIA VIRUS LACKING E3L BY EXPRESSION OF THE REOVIRUS S4 GENE [J].
BEATTIE, E ;
DENZLER, KL ;
TARTAGLIA, J ;
PERKUS, ME ;
PAOLETTI, E ;
JACOBS, BL .
JOURNAL OF VIROLOGY, 1995, 69 (01) :499-505
[3]   Interactions of Marburg virus nucleocapsid proteins [J].
Becker, S ;
Rinne, C ;
Hofsäss, U ;
Klenk, HD ;
Mühlberger, E .
VIROLOGY, 1998, 249 (02) :406-417
[4]  
Becker S, 1999, CURR TOP MICROBIOL, V235, P23
[5]   THE INTERFERON-STIMULATED GENE 54 K PROMOTER CONTAINS 2 ADJACENT FUNCTIONAL INTERFERON-STIMULATED RESPONSE ELEMENTS OF DIFFERENT STRENGTH, WHICH ACT SYNERGISTICALLY FOR MAXIMAL INTERFERON-ALPHA INDUCIBILITY [J].
BLUYSSEN, HAR ;
VLIETSTRA, RJ ;
VANDERMADE, A ;
TRAPMAN, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 220 (02) :395-402
[6]   THE E3L GENE OF VACCINIA VIRUS ENCODES AN INHIBITOR OF THE INTERFERON-INDUCED, DOUBLE-STRANDED RNA-DEPENDENT PROTEIN-KINASE [J].
CHANG, HW ;
WATSON, JC ;
JACOBS, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :4825-4829
[7]   MAPPING OF HERPES-SIMPLEX VIRUS-1 NEUROVIRULENCE TO GAMMA-134.5, A GENE NONESSENTIAL FOR GROWTH IN CULTURE [J].
CHOU, J ;
KERN, ER ;
WHITLEY, RJ ;
ROIZMAN, B .
SCIENCE, 1990, 250 (4985) :1262-1266
[8]   The double-stranded RNA-dependent protein kinase PKR: Structure and function [J].
Clemens, MJ ;
Elia, A .
JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 1997, 17 (09) :503-524
[9]   THE E3L AND K3L VACCINIA VIRUS GENE-PRODUCTS STIMULATE TRANSLATION THROUGH INHIBITION OF THE DOUBLE-STRANDED RNA-DEPENDENT PROTEIN-KINASE BY DIFFERENT MECHANISMS [J].
DAVIES, MV ;
CHANG, HW ;
JACOBS, BL ;
KAUFMAN, RJ .
JOURNAL OF VIROLOGY, 1993, 67 (03) :1688-1692
[10]   The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation [J].
Didcock, L ;
Young, DF ;
Goodbourn, S ;
Randall, RE .
JOURNAL OF VIROLOGY, 1999, 73 (12) :9928-9933