On acyclic 4-choosability of planar graphs without short cycles

被引:12
作者
Chen, Min [1 ]
Raspaud, Andre [1 ]
机构
[1] Univ Bordeaux 1, CNRS, UMR 5800, LaBRI, F-33405 Talence, France
关键词
Planar graphs; Acyclic colorings; Choosable; Cycle; COLORINGS; 5-CHOOSABILITY; GIRTH;
D O I
10.1016/j.disc.2010.03.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph. A proper vertex coloring of G is acyclic if G contains no bicolored cycle. Namely, every cycle of G must be colored with at least three colors. G is acyclically L-list colorable if for a given list assignment L = {L(v) : v is an element of V}, there exists a proper acyclic coloring pi of G such that pi (v) is an element of L(v) for all v is an element of V. If G is acyclically L-list colorable for any list assignment with |L(v)| >= k for all v is an element of V. then G is acyclically k-choosable. In this paper, we prove that planar graphs with neither {4, 5}-cycles nor 8-cycles having a triangular chord are acyclically 4-choosable. This implies that planar graphs either without {4, 5, 7}-cycles or without {4, 5, 8}-cycles are acyclically 4-choosable. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2113 / 2118
页数:6
相关论文
共 18 条
[1]   EVERY PLANAR GRAPH HAS AN ACYCLIC-7-COLORING [J].
ALBERTSON, MO ;
BERMAN, DM .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 28 (1-2) :169-174
[2]  
[Бородин Олег Вениаминович Borodin Oleg Veniaminovich], 2009, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V16, P3
[3]   Acyclic colourings of planar graphs with large girth [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :344-352
[4]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1979, 25 (03) :211-236
[5]   Acyclic list 7-coloring of planar graphs [J].
Borodin, OV ;
Flaass, DGF ;
Kostochka, AV ;
Raspaud, A ;
Sopena, E .
JOURNAL OF GRAPH THEORY, 2002, 40 (02) :83-90
[6]  
BORODIN OV, 2009, ACYCLIC 4 CHOO UNPUB
[7]  
BORODIN OV, 2009, ACYCLIC 3 CHOO UNPUB
[8]  
CHEN M, 2009, ACYCLIC 4 CHOO UNPUB
[9]   Acyclic 5-choosability of planar graphs without 4-cycles [J].
Chen, Min ;
Wang, Weifan .
DISCRETE MATHEMATICS, 2008, 308 (24) :6216-6225
[10]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
GRUNBAUM, B .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) :390-408