Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds

被引:45
作者
Huang, Guangyue [1 ]
Ma, Bingqing [1 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Henan, Peoples R China
关键词
Gradient estimates; Positive solution; Harnack inequality; N-Bakry-Emery Ricci tensor; OPERATOR; THEOREM;
D O I
10.1007/s00013-009-0091-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a complete noncompact Riemannian manifold. We consider gradient estimates for the positive solutions to the following non-linear parabolic equation partial derivative u/partial derivative t = Delta(u)(f) + au log u + bu on M x [0, + infinity), where a, b are two real constants, f is a smooth real-valued function on M and Delta(f) = Delta - Delta f Delta. Under the assumption that the N-Bakry-Emery Ricci tensor is bounded from below by a negative constant, we obtain a gradient estimate for positive solutions of the above equation. As an application, we obtain a Harnack inequality and a Gaussian lower bound of the heat kernel of such an equation.
引用
收藏
页码:265 / 275
页数:11
相关论文
共 19 条
[1]  
Aubin T., 1982, Monge-Ampere Equations, V252
[2]  
CHAU A, ARXIVMATH0701153
[3]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[4]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[5]  
DAVIES EB, 1989, HEAT KERNELS SPECTRA
[6]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[7]  
HSU SY, ARXIV08064004
[8]  
HUANG GY, GRADIENT ESTIMATES N
[9]  
Ledoux M., 2000, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V9, P305, DOI 10.5802/afst.962
[10]   Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J].
Li, XD .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10) :1295-1361