Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete

被引:116
|
作者
Castel, A. [1 ]
Foster, S. J. [1 ]
Ng, T. [1 ]
Sanjayan, J. G. [2 ]
Gilbert, R. I. [1 ]
机构
[1] Univ New S Wales, Sch Civil & Environm Engn, Ctr Infrastruct Engn & Safety, Sydney, NSW, Australia
[2] Swinburne Univ Technol, Ctr Sustainable Infrastruct, Hawthorn, Vic 3122, Australia
关键词
Sustainability; Geopolymer concrete; Fly ash; Creep; Shrinkage; PORE-SIZE DISTRIBUTION; ENGINEERING PROPERTIES; CEMENT; PERFORMANCE;
D O I
10.1617/s11527-015-0599-1
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The main purpose of this research is to study the time dependent behaviour of a geopolymer concrete. The geopolymer binder is composed of 85.2 % of low calcium fly ash and only 14.8 % of ground granulated blast furnace slag. Both drying shrinkage and creep are studied. In addition, different curing conditions at elevated temperature were used. All experimental results were compared to predictions made using the Eurocode 2. The curing regime plays an important role in the magnitude and development of both creep and drying shrinkage of class F fly ash based geopolymer concrete. A minimum of 3 days at 40 degrees C or 1 day at 80 degrees C is required to obtain final drying shrinkage strains similar to or less than those adopted by Eurocode 2 for ordinary Portland cement (OPC) concrete. Creep strains were similar or less than those predicted by Eurocode 2 for OPC concrete when the geopolymer concrete was cured for 3 days at 40 degrees C. After 7 days at 80 degrees C, creep strains became negligible.
引用
收藏
页码:1619 / 1628
页数:10
相关论文
共 50 条
  • [21] The Experimental Study on Creep and Shrinkage of High Strength Concrete with Fly Ash
    Wang, Jian-qun
    Fang, Zhi
    Tang, Zhijian
    ADVANCES IN CIVIL INFRASTRUCTURE ENGINEERING, PTS 1 AND 2, 2013, 639-640 : 423 - +
  • [22] Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag
    Amin, Mohamed
    Elsakhawy, Yara
    el-hassan, Khaled Abu
    Abdelsalam, Bassam Abdelsalam
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
  • [23] High-volume fly ash concrete with high strength and low drying shrinkage
    Atis, CD
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2003, 15 (02) : 153 - 156
  • [24] Corrosion of Low Calcium Fly Ash Geopolymer Concrete: A Preliminary Study
    Olivia, Monita
    Nikraz, Hamid
    PROCEEDINGS OF THE 6TH ASIAN SYMPOSIUM ON POLYMERS IN CONCRETE, 2009, : 142 - 152
  • [25] Properties of Fly Ash-Slag-Based Geopolymer Concrete with Low Molarity Sodium Hydroxide
    Sunarsih, Ernawati Sri
    As'ad, Sholihin
    Sam, Abdul Rahman Mohd
    Kristiawan, Stefanus Adi
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2023, 9 (02): : 381 - 392
  • [26] Mechanical property and microstructure of geopolymer concrete based on fly ash and slag
    Huang H.
    Guo M.
    Zhang W.
    Yang S.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2022, 54 (03): : 74 - 84
  • [27] A critical review of slag and fly-ash based geopolymer concrete
    Akcaoglu, Tulin
    Cubukcuoglu, Beste
    Awad, Ashraf
    COMPUTERS AND CONCRETE, 2019, 24 (05) : 453 - 458
  • [28] Shrinkage of blended cement concrete with fly ash or limestone calcined clay
    Sumaiya Afroz
    Yingda Zhang
    Quang Dieu Nguyen
    Taehwan Kim
    Arnaud Castel
    Materials and Structures, 2023, 56
  • [29] Influence of slag on mechanical and durability properties of fly ash-based geopolymer concrete
    Bellum, Ramamohana Reddy
    Muniraj, Karthikeyan
    Madduru, Rama Chand
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2020, 57 (05) : 530 - 545
  • [30] Shrinkage of blended cement concrete with fly ash or limestone calcined clay
    Afroz, Sumaiya
    Zhang, Yingda
    Nguyen, Quang Dieu
    Kim, Taehwan
    Castel, Arnaud
    MATERIALS AND STRUCTURES, 2023, 56 (01)