共 50 条
Arctic Soil Governs Whether Climate Change Drives Global Losses or Gains in Soil Carbon
被引:49
作者:
Wieder, William R.
[1
,2
]
Sulman, Benjamin N.
[3
,4
]
Hartman, Melannic D.
[1
,5
]
Koven, Charles D.
[6
]
Bradford, Mark A.
[7
]
机构:
[1] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA
[2] Univ Colorado, Inst Arctic Arid Alpine Res, Boulder, CO 80309 USA
[3] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA
[4] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN USA
[5] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
[6] Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA USA
[7] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA
基金:
美国海洋和大气管理局;
美国国家科学基金会;
关键词:
soil carbon;
biogeochemistry;
models;
microbial explicit;
carbon cycle;
Arctic;
EARTH SYSTEM MODELS;
ORGANIC-MATTER;
UNCERTAINTY;
TURNOVER;
STABILIZATION;
DECOMPOSITION;
TEMPERATURE;
PROJECTIONS;
NITROGEN;
CYCLE;
D O I:
10.1029/2019GL085543
中图分类号:
P [天文学、地球科学];
学科分类号:
07 ;
摘要:
Key uncertainties in terrestrial carbon cycle projections revolve around the timing, direction, and magnitude of the carbon cycle feedback to climate change. This is especially true in carbon-rich Arctic ecosystems, where permafrost soils contain roughly one third of the world's soil carbon stocks, which are likely vulnerable to loss. Using an ensemble of soil biogeochemical models that reflect recent changes in the conceptual understanding of factors responsible for soil carbon persistence, we quantify potential soil carbon responses under two representative climate change scenarios. Our results illustrate that models disagree on the sign and magnitude of global soil changes through 2100, with disagreements primarily driven by divergent responses of Arctic systems. These results largely reflect different assumptions about the nature of soil carbon persistence and vulnerabilities, underscoring the challenges associated with setting allowable greenhouse gas emission targets that will limit global warming to 1.5 degrees C.
引用
收藏
页码:14486 / 14495
页数:10
相关论文