A compact embedding result for anisotropic Sobolev spaces associated to a strip-like domain and some applications

被引:7
作者
Alves, Claudianor [1 ]
Bisci, Giovanni Molica [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Italy
关键词
Anisotropic problems; Compact embedding results; Variational method; VARIABLE EXPONENT SPACES; P(X)-LAPLACIAN EQUATIONS; P-LAPLACIAN; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEMS; CRITICAL GROWTH; WEAK SOLUTIONS; R-N; REGULARITY; EXISTENCE;
D O I
10.1016/j.jmaa.2019.123490
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let m >= 1 and d >= 2 be integers and consider a strip-like domain O x R-d, where O subset of R-m is a bounded Euclidean domain with smooth boundary. Furthermore, let p : (O) over barx R-d -> R be uniformly continuous and cylindrically symmetric function. We prove that the subspace of W-1,W-p(x,W-y)(O x R-d) consisting of the cylindrically symmetric functions is compactly embedded into L-infinity(O x R-d) provided that m + d < p- := inf ((x,y)is an element of<(O)over bar>xRd) p(x, y) <= p(+) := sup ((x,y)is an element of(O) over bar xRd) p(x, y) < +infinity. As an application, we study a Neumann problem involving the p(x, y)-Laplacian operator and an oscillating nonlinearity, proving the existence of infinitely many cylindrically symmetric weak solutions. Our approach is based on variational and topological methods in addition to the principle of symmetric criticality. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 61 条
[1]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   Existence of solution for a degenerate p(x)-Laplacian equation in RN [J].
Alves, Claudianor O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :731-742
[4]   EXISTENCE OF SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN EQUATIONS INVOLVING A CONCAVE-CONVEX NONLINEARITY WITH CRITICAL GROWTH IN RN [J].
Alves, Claudianor O. ;
Ferreira, Marcelo C. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 45 (02) :399-422
[5]   Nonlinear perturbations of a p(x)-Laplacian equation with critical growth in RN [J].
Alves, Claudianor O. ;
Ferreira, Marcelo C. .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) :849-868
[6]  
Alves CO, 2010, DIFFER INTEGRAL EQU, V23, P113
[7]  
Alves CO, 2006, PROG NONLINEAR DIFFE, V66, P17
[8]  
[Anonymous], 2000, Proyecciones
[9]  
[Anonymous], 2000, ELECT J DIFFER EQU C
[10]  
Antontsev SN., 2006, ANN U FERRARA SEZ 7, V52, P19, DOI DOI 10.1007/S11565-006-0002-9