Exploring R for Modeling Spatial Extreme Precipitation Data

被引:1
作者
Gomes, Dora Prata [1 ,2 ]
Neves, Manuela [3 ,4 ]
机构
[1] Univ Nova Lisboa, CMA, P-1200 Lisbon, Portugal
[2] Univ Nova Lisboa, Fac Ciencias Tecnol, P-1200 Lisbon, Portugal
[3] Univ Lisbon, CEAUL, Lisbon, Portugal
[4] Univ Lisbon, Inst Super Agron, Lisbon, Portugal
来源
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014) | 2014年 / 1618卷
关键词
Extremal Dependence; Geostatistics; Max-Stable processes; R Software; Spatial Extremes;
D O I
10.1063/1.4897796
中图分类号
O59 [应用物理学];
学科分类号
摘要
Natural hazards such as high rainfall and windstorms arise due to physical processes and are usually spatial in its nature. Classical geostatistics, mostly based on multivariate normal distributions, is inappropriate for modeling tail behavior. Several methods have been proposed for the spatial modeling of extremes, among which max-stable processes are perhaps the most well known. They form a natural class of processes extending extreme value theory when sample maxima are observed at each site of a spatial process. Jointly with the theoretical framework for modeling and characterizing measures of dependence of those processes, to deal with free and open-source software is of great value for practitioners. In this note, we illustrate how R can be used for modeling spatial extreme precipitation data.
引用
收藏
页码:547 / 550
页数:4
相关论文
共 50 条
[41]   A penalized maximum likelihood approach for m-year precipitation return values estimation with lattice spatial data [J].
Zheng, Wei ;
Zhang, Jun ;
Liu, Hengchang ;
Li, Jinyang .
2014 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA WORKSHOPS (CIC-ICCC), 2014, :16-20
[42]   Using spatial and spatial-extreme statistics to characterize snow avalanche cycles [J].
Eckert, Nicolas ;
Gaume, Johan ;
Castebrunet, Helene .
SPATIAL STATISTICS 2011: MAPPING GLOBAL CHANGE, 2011, 7 :224-229
[43]   rtop: An R package for interpolation of data with a variable spatial support, with an example from river networks [J].
Skoien, J. O. ;
Bloeschl, G. ;
Laaha, G. ;
Pebesma, E. ;
Parajka, J. ;
Viglione, A. .
COMPUTERS & GEOSCIENCES, 2014, 67 :180-190
[44]   Applying Methods of Exploratory Data Analysis and Methods of Modeling the Unemployment Rate in Spatial Terms in Poland [J].
Ogryzek, Marek ;
Jaskulski, Marcin .
APPLIED SCIENCES-BASEL, 2025, 15 (08)
[45]   SPATIAL MODELING OF SNOW WATER EQUIVALENT USING AIRBORNE AND GROUND-BASED SNOW DATA [J].
CARROLL, SS ;
DAY, GN ;
CRESSIE, N ;
CARROLL, TR .
ENVIRONMETRICS, 1995, 6 (02) :127-139
[46]   Variations in the Intensity and Spatial Extent of Tropical Cyclone Precipitation [J].
Touma, Danielle ;
Stevenson, Samantha ;
Camargo, Suzana J. ;
Horton, Daniel E. ;
Diffenbaugh, Noah S. .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (23) :13992-14002
[47]   Birnbaum–Saunders functional regression models for spatial data [J].
Sergio Martínez ;
Ramón Giraldo ;
Víctor Leiva .
Stochastic Environmental Research and Risk Assessment, 2019, 33 :1765-1780
[48]   Statistical Modeling of Spatial Extremes [J].
Davison, A. C. ;
Padoan, S. A. ;
Ribatet, M. .
STATISTICAL SCIENCE, 2012, 27 (02) :161-186
[49]   Transfer function-noise modeling and spatial interpolation to evaluate the risk of extreme (shallow) water-table levels in the Brazilian Cerrados [J].
Manzione, Rodrigo L. ;
Knotters, Martin ;
Heuvelink, Gerard B. M. ;
Von Asmuth, Jos R. ;
Camara, Gilberto .
HYDROGEOLOGY JOURNAL, 2010, 18 (08) :1927-1937
[50]   Assessment of local dynamics in extreme precipitation frequency using direct sequential cosimulation [J].
Costa, Ana Cristina ;
Soares, Amilcar ;
Pereira, Maria Joao ;
Durao, Rita .
ENVIRONMENTAL SCIENCE AND SUSTAINABILITY, 2009, :31-+