Exploring R for Modeling Spatial Extreme Precipitation Data

被引:1
|
作者
Gomes, Dora Prata [1 ,2 ]
Neves, Manuela [3 ,4 ]
机构
[1] Univ Nova Lisboa, CMA, P-1200 Lisbon, Portugal
[2] Univ Nova Lisboa, Fac Ciencias Tecnol, P-1200 Lisbon, Portugal
[3] Univ Lisbon, CEAUL, Lisbon, Portugal
[4] Univ Lisbon, Inst Super Agron, Lisbon, Portugal
来源
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014) | 2014年 / 1618卷
关键词
Extremal Dependence; Geostatistics; Max-Stable processes; R Software; Spatial Extremes;
D O I
10.1063/1.4897796
中图分类号
O59 [应用物理学];
学科分类号
摘要
Natural hazards such as high rainfall and windstorms arise due to physical processes and are usually spatial in its nature. Classical geostatistics, mostly based on multivariate normal distributions, is inappropriate for modeling tail behavior. Several methods have been proposed for the spatial modeling of extremes, among which max-stable processes are perhaps the most well known. They form a natural class of processes extending extreme value theory when sample maxima are observed at each site of a spatial process. Jointly with the theoretical framework for modeling and characterizing measures of dependence of those processes, to deal with free and open-source software is of great value for practitioners. In this note, we illustrate how R can be used for modeling spatial extreme precipitation data.
引用
收藏
页码:547 / 550
页数:4
相关论文
共 50 条
  • [1] Smooth Spatial Modeling of Extreme Mediterranean Precipitation
    Hammami, Hela
    Carreau, Julie
    Neppel, Luc
    Elasmi, Sadok
    Feki, Haifa
    WATER, 2022, 14 (22)
  • [2] Spatial Modeling and Future Projection of Extreme Precipitation Extents
    Zhong, Peng
    Brunner, Manuela
    Opitz, Thomas
    Huser, Raphael
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [3] Bayesian spatial modeling of extreme precipitation return levels
    Cooley, Daniel
    Nychka, Douglas
    Naveau, Philippe
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 824 - 840
  • [4] Modeling Extreme Precipitation Data in a Mining Area
    Lymperi, Ourania-Anna
    Varouchakis, Emmanouil A.
    MATHEMATICAL GEOSCIENCES, 2024, 56 (07) : 1405 - 1437
  • [5] Statistical Modeling of Extreme Precipitation with TRMM Data
    Demirdjian, Levon
    Zhou, Yaping
    Huffman, George J.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2018, 57 (01) : 15 - 30
  • [6] Bayesian Spatial Modeling of Precipitation Data
    Heo, Tae-Young
    Park, Man Sik
    KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (02) : 425 - 433
  • [7] Technical note: Modeling spatial fields of extreme precipitation - a hierarchical Bayesian approach
    Rahill-Marier, Bianca
    Devineni, Naresh
    Lall, Upmanu
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (21) : 5685 - 5695
  • [8] Methods for exploring spatial and temporal variability of extreme events in climate data
    Coelho, C. A. S.
    Ferro, C. A. T.
    Stephenson, D. B.
    Steinskog, D. J.
    JOURNAL OF CLIMATE, 2008, 21 (10) : 2072 - 2092
  • [9] Methods for exploring spatial and temporal variability of extreme events in climate data
    Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Rodovia Presidente Dutra, Km 40, 12630-000 Cachoeira Paulista, São Paulo, Brazil
    不详
    不详
    J. Clim., 10 (2072-2092):
  • [10] Spatial Downscaling of GPM Satellite Precipitation Data Using Extreme Random Trees
    Zhu, Shaonan
    Wang, Xiangyuan
    Jiao, Donglai
    Zhang, Yiding
    Liu, Jiaxin
    ATMOSPHERE, 2023, 14 (10)