Exploring R for Modeling Spatial Extreme Precipitation Data
被引:1
|
作者:
Gomes, Dora Prata
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, CMA, P-1200 Lisbon, Portugal
Univ Nova Lisboa, Fac Ciencias Tecnol, P-1200 Lisbon, PortugalUniv Nova Lisboa, CMA, P-1200 Lisbon, Portugal
Gomes, Dora Prata
[1
,2
]
Neves, Manuela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, CEAUL, Lisbon, Portugal
Univ Lisbon, Inst Super Agron, Lisbon, PortugalUniv Nova Lisboa, CMA, P-1200 Lisbon, Portugal
Neves, Manuela
[3
,4
]
机构:
[1] Univ Nova Lisboa, CMA, P-1200 Lisbon, Portugal
[2] Univ Nova Lisboa, Fac Ciencias Tecnol, P-1200 Lisbon, Portugal
[3] Univ Lisbon, CEAUL, Lisbon, Portugal
[4] Univ Lisbon, Inst Super Agron, Lisbon, Portugal
来源:
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014)
|
2014年
/
1618卷
关键词:
Extremal Dependence;
Geostatistics;
Max-Stable processes;
R Software;
Spatial Extremes;
D O I:
10.1063/1.4897796
中图分类号:
O59 [应用物理学];
学科分类号:
摘要:
Natural hazards such as high rainfall and windstorms arise due to physical processes and are usually spatial in its nature. Classical geostatistics, mostly based on multivariate normal distributions, is inappropriate for modeling tail behavior. Several methods have been proposed for the spatial modeling of extremes, among which max-stable processes are perhaps the most well known. They form a natural class of processes extending extreme value theory when sample maxima are observed at each site of a spatial process. Jointly with the theoretical framework for modeling and characterizing measures of dependence of those processes, to deal with free and open-source software is of great value for practitioners. In this note, we illustrate how R can be used for modeling spatial extreme precipitation data.
机构:
Univ New South Wales, Sch Math & Stat, Data Sci Hub, Sydney, AustraliaUniv New South Wales, Sch Math & Stat, Data Sci Hub, Sydney, Australia
Zhong, Peng
Brunner, Manuela
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
WSL Inst Snow & Avalanche Res SLF, Davos, Switzerland
Climate Change Extremes & Nat Hazards Alpine Reg R, Davos, SwitzerlandUniv New South Wales, Sch Math & Stat, Data Sci Hub, Sydney, Australia
Brunner, Manuela
Opitz, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
INRAE, Biostat & Spatial Proc, Avignon, FranceUniv New South Wales, Sch Math & Stat, Data Sci Hub, Sydney, Australia
Opitz, Thomas
Huser, Raphael
论文数: 0引用数: 0
h-index: 0
机构:
KAUST, Stat Program, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi ArabiaUniv New South Wales, Sch Math & Stat, Data Sci Hub, Sydney, Australia
机构:
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Demirdjian, Levon
Zhou, Yaping
论文数: 0引用数: 0
h-index: 0
机构:
Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA
NASA, Div Earth Sci, Goddard Space Flight Ctr, Greenbelt, MD USAUniv Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Zhou, Yaping
Huffman, George J.
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Div Earth Sci, Goddard Space Flight Ctr, Greenbelt, MD USAUniv Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Rodovia Presidente Dutra, Km 40, 12630-000 Cachoeira Paulista, São Paulo, Brazil
论文数: 0引用数: 0
h-index: 0
Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Rodovia Presidente Dutra, Km 40, 12630-000 Cachoeira Paulista, São Paulo, Brazil