Phonon coherence and its effect on thermal conductivity of nanostructures

被引:161
作者
Xie, Guofeng [1 ]
Ding, Ding [2 ]
Zhang, Gang [3 ]
机构
[1] Hunan Univ Sci & Technol, Sch Mat Sci & Engn, Xiangtan, Peoples R China
[2] Singapore Inst Mfg Technol, Singapore, Singapore
[3] Inst High Performance Comp, Singapore 138632, Singapore
基金
中国国家自然科学基金;
关键词
Phonon transport coherence; thermal conductivity; nanostructures; HIGH-FREQUENCY PHONONS; THERMOELECTRIC PROPERTIES; STIMULATED-EMISSION; SILICON NANOWIRES; HEAT-CONDUCTION; TWINNING SUPERLATTICES; SPECTRAL DISTRIBUTION; ACOUSTIC PHONONS; HOLE GAS; TRANSPORT;
D O I
10.1080/23746149.2018.1480417
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of coherence is one of the fundamental phenomena in electronics and optics. In addition to electron and photon, phonon is another important energy and information carrier in nature. Without any doubt, exploration of the phonon coherence and its impact on thermal conduction will markedly change many aspects in broad applications for heat control and management in the real world. So far, the application of coherent effect onmanipulation of phonon transport is a challenging work. In this article, we review recent advances in the study of the phonon coherent transport in nanomaterials and nanostructures. We first briefly look back the classical and quantum theory of coherence. Next, we review the progresses made in the understanding of phonon coherence in superlattice, nanowires and nanomeshes, respectively, and focus on the effect of phonon coherence on thermal conductivity. Finally, we introduce the recent advances in the direct detection of phonon coherence using optical coherence theory.
引用
收藏
页码:719 / 754
页数:36
相关论文
共 191 条
[1]   Confined phonons in Si nanowires [J].
Adu, KW ;
Gutiérrez, HR ;
Kim, UJ ;
Sumanasekera, GU ;
Eklund, PC .
NANO LETTERS, 2005, 5 (03) :409-414
[2]   Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Su, Mehmet ;
Leseman, Zayd C. ;
Reinke, Charles M. ;
El-Kady, Ihab .
NATURE COMMUNICATIONS, 2015, 6
[3]   Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons [J].
Albrecht, A. ;
Retzker, A. ;
Jelezko, F. ;
Plenio, M. B. .
NEW JOURNAL OF PHYSICS, 2013, 15
[4]   Twinning superlattices in indium phosphide nanowires [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Borgstrom, Magnus T. ;
Feiner, Lou-Fe ;
Immink, George ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NATURE, 2008, 456 (7220) :369-372
[5]   First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres [J].
Alkauskas, Audrius ;
Buckley, Bob B. ;
Awschalom, David D. ;
Van de Walle, Chris G. .
NEW JOURNAL OF PHYSICS, 2014, 16
[6]   Heat conduction engineering in pillar-based phononic crystals [J].
Anufriev, Roman ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2017, 95 (15)
[7]   Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures [J].
Anufriev, Roman ;
Maire, Jeremie ;
Nomura, Masahiro .
PHYSICAL REVIEW B, 2016, 93 (04)
[8]   Controlled double-slit electron diffraction [J].
Bach, Roger ;
Pope, Damian ;
Liou, Sy-Hwang ;
Batelaan, Herman .
NEW JOURNAL OF PHYSICS, 2013, 15
[9]   Thermal transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations [J].
Bagri, Akbar ;
Kim, Sang-Pil ;
Ruoff, Rodney S. ;
Shenoy, Vivek B. .
NANO LETTERS, 2011, 11 (09) :3917-3921
[10]   Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well [J].
Balandin, A ;
Wang, KL .
PHYSICAL REVIEW B, 1998, 58 (03) :1544-1549