Approximating the degree-bounded minimum diameter spanning tree problem

被引:17
作者
Könemann, J
Levin, A
Sinha, A
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
[3] Univ Michigan, Sch Business, Ann Arbor, MI 48103 USA
[4] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
关键词
approximation algorithms; spanning trees; bicriteria approximation; degree-bounded spanning trees;
D O I
10.1007/s00453-004-1121-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the problem of finding a minimum diameter spanning tree with maximum node degree B in a complete undirected edge-weighted graph. We provide an O(rootlog(B) n)-approximation algorithm for the problem. Our algorithm is purely combinatorial. and relies on a combination of filtering and divide and conquer.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
Arkin EM, 2002, SIAM PROC S, P568
[3]  
ARKIN EM, 2003, P 15 ANN ACM S PAR A, P295
[4]  
Bartal Y., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P161, DOI 10.1145/276698.276725
[5]   Probabilistic approximation of metric spaces and its algorithmic applications [J].
Bartal, Y .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :184-193
[6]  
BAUER F, 1995, IEEE INFOCOM SER, P369, DOI 10.1109/INFCOM.1995.515897
[7]   TREE SPANNERS [J].
CAI, LZ ;
CORNEIL, DG .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (03) :359-387
[8]  
Chu Y., 2001, P ACM SIGCOMM, P55
[9]   MULTICAST ROUTING IN DATAGRAM INTERNETWORKS AND EXTENDED LANS [J].
DEERING, SE ;
CHERITON, DR .
ACM TRANSACTIONS ON COMPUTER SYSTEMS, 1990, 8 (02) :85-110
[10]   APPROXIMATING THE MINIMUM-DEGREE STEINER TREE TO WITHIN ONE OF OPTIMAL [J].
FURER, M ;
RAGHAVACHARI, B .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1994, 17 (03) :409-423