GLOBAL SOLUTIONS AND EXTERIOR DIRICHLET PROBLEM FOR MONGE-AMPERE EQUATION IN R2

被引:0
作者
Bao, Jiguang [1 ]
Li, Haigang [1 ]
Zhang, Lei [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Florida, Dept Math, 358 Little Hall,POB 118105, Gainesville, FL 32611 USA
关键词
EXTENSION; THEOREM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Monge-Ampere equation det(D(2)u) = f in two dimensional spaces is different in nature from their counterparts in higher dimensional spaces. In this article we employ new ideas to establish two main results for the Monge-Ampere equation defined either globally in R-2 or outside a convex set. First, we prove the existence of a global solution that satisfies a prescribed asymptotic behavior at infinity, if f is asymptotically close to a positive constant. Then we solve the exterior Dirichlet problem if data are given on the boundary of a convex set and at infinity.
引用
收藏
页码:563 / 582
页数:20
相关论文
共 26 条
  • [1] Aleksandrov A.D., 1958, Vestn. Leningr. Univ., V13, P5
  • [2] [Anonymous], 1963, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
  • [3] BAKELMAN IJ, 1957, DOKL AKAD NAUK SSSR+, V114, P1143
  • [4] Monge-Ampere equation on exterior domains
    Bao, Jiguang
    Li, Haigang
    Zhang, Lei
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) : 39 - 63
  • [5] On the exterior Dirichlet problem for the Monge-Ampere equation in dimension two
    Bao, Jiguang
    Li, Haigang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) : 6448 - 6455
  • [6] THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION
    CAFFARELLI, L
    NIRENBERG, L
    SPRUCK, J
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) : 369 - 402
  • [7] An extension to a theorem of Jorgens, Calabi, and Pogorelov
    Caffarelli, L
    Li, YY
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (05) : 549 - 583
  • [8] Caffarelli L., 1995, Topics in PDEs: The Monge-Ampere equation
  • [9] Caffarelli Luis A, 1995, AM MATH SOC C PUBLIC, V43, P104
  • [10] Calabi E., 1958, MICH MATH J, V5, P105, DOI 10.1307/mmj/1028998055