APPLYING A PHENOLOGICAL OBJECT-BASED IMAGE ANALYSIS (PHENOBIA) FOR AGRICULTURAL LAND CLASSIFICATION: A STUDY CASE IN THE BRAZILIAN CERRADO

被引:2
作者
Bendini, Hugo N. [1 ]
Fonseca, Leila M. G. [1 ]
Soares, Anderson R. [1 ]
Rufin, Philippe [2 ,3 ]
Schwieder, Marcel [2 ]
Rodrigues, Marcos A. [1 ]
Maretto, Raian, V [1 ]
Korting, Thales S. [1 ]
Leitao, Pedro J. [2 ,4 ]
Sanches, Ieda D. A. [1 ]
Hostert, Patrick [2 ,3 ]
机构
[1] Brazilian Natl Inst Space Res INPE, Sao Jose Dos Campos, Brazil
[2] Humboldt Univ, Geog Dept, Unter Linden 6, D-10099 Berlin, Germany
[3] Humboldt Univ, Integrat Res Inst Transformat Human Environm Syst, Unter Linden 6, D-10099 Berlin, Germany
[4] Tech Univ Braunschwieg, Dept Landscape Ecol & Environm Syst Anal, Langer Kamp 19c, D-38106 Braunschweig, Germany
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
巴西圣保罗研究基金会;
关键词
Big data; Time-series mining; Phenometrics; OBIA;
D O I
10.1109/IGARSS39084.2020.9323184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mapping agriculture with high accuracy is important to generate reliable information about crop production. Pixel-based methods still present problems with noise and usually require post-processing approaches to reach satisfactory results. Object-based Image Analysis (OBIA) enable the detection of homogeneous objects in remote sensing images based on spectral similarity. However, traditional OBIA does not consider the multi-temporal characteristics of land cover or land use, such as agriculture. The objective of this study is to evaluate a phenological object-based approach with dense Landsat image time series for mapping agriculture in different level of detail in the Brazilian Cerrado. We derived pixel-wise EVI fitted time series with 8-day temporal resolution and applied multi-resolution segmentation using all image bands to incorporate the influence of space and time. Then we generated phenological metrics and applied OBIA of agricultural lands in Brazil using a hierarchical classification scheme. The overall accuracies for each hierarchical level were around 90%, and the spatial consistency of the generated maps is promising.
引用
收藏
页码:1078 / 1081
页数:4
相关论文
共 18 条
[1]  
Baatz M., 2004, ECOGNITION PROFESSIO
[2]  
Baatz M., 2000, Journal of Photogrammetry and Remote Sensing, V58, P12
[3]   Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis [J].
Belgiu, Mariana ;
Csillik, Ovidiu .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :509-523
[4]   Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series [J].
Bendini, Hugo do Nascimento ;
Fonseca, Leila Maria Garcia ;
Schwieder, Marcel ;
Korting, Thales Sehn ;
Rufin, Philippe ;
Sanches, Ieda Del Arco ;
Leitao, Pedro J. ;
Hostert, Patrick .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 82
[5]   Object based image analysis for remote sensing [J].
Blaschke, T. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) :2-16
[6]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[7]   Automated parameterisation for multi-scale image segmentation on multiple layers [J].
Dragut, L. ;
Csillik, O. ;
Eisank, C. ;
Tiede, D. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 88 :119-127
[8]  
Hall M.A., 1998, CORRELATION BASED FE
[9]  
Jonsson P., 2015, TIMESAT 3 2 PARALLEL, P22
[10]   GeoDMA-Geographic Data Mining Analyst [J].
Koerting, Thales Sehn ;
Garcia Fonseca, Leila Maria ;
Camara, Gilberto .
COMPUTERS & GEOSCIENCES, 2013, 57 :133-145