Counterexamples to Rational Dilation on Symmetric Multiply Connected Domains

被引:6
作者
Pickering, James [1 ]
机构
[1] Newcastle Univ, Dept Math, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
Rational dilation; hyperelliptic Riemann surfaces; Nevanlinna-Pick interpolation;
D O I
10.1007/s11785-008-0079-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if R is a compact domain in the complex plane with two or more holes and an anticonformal involution onto itself (or equivalently a hyperelliptic Schottky double), then there is an operator T which has R as a spectral set, but does not dilate to a normal operator with spectrum on the boundary of R.
引用
收藏
页码:55 / 95
页数:41
相关论文
共 13 条
[1]   RATIONAL DILATION ON AN ANNULUS [J].
AGLER, J .
ANNALS OF MATHEMATICS, 1985, 121 (03) :537-563
[2]  
Agler J., 2002, GRADUATE STUDIES MAT
[3]  
AGLER J, 2004, CLASSICAL FUNCTION T
[4]  
[Anonymous], 2002, CAMBRIDGE STUDIES AD
[5]   KERNEL FUNCTIONS ON DOMAINS WITH HYPERELLIPTIC DOUBLE [J].
BARKER, WH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 231 (02) :339-347
[6]  
BARKER WH, 1975, THESIS STANFORD
[7]   The failure of rational dilation on a triply connected domain [J].
Dritschel, MA ;
McCullough, S .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :873-918
[8]  
Farkas H., 1992, GRADUATE TEXTS MATH
[9]  
Fay J.D., 1973, Lecture Notes in Mathematics
[10]  
FISHER S. D, 1983, PURE APPL MATH