Predictive feedback boundary control of semilinear and quasilinear 2 x 2 hyperbolic PDE-ODE systems

被引:8
作者
Strecker, Timm [1 ]
Aamo, Ole Morten [2 ]
Cantoni, Michael [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
[2] Norwegian Univ Sci & Technol NTNU, Dept Engn Cybernet, Trondheim, Norway
基金
澳大利亚研究理事会;
关键词
Available online xxxx; Hyperbolic PDE-ODE systems; Distributed-parameter systems; Boundary control; Stabilization; Estimation; LYAPUNOV FUNCTION; TIME OBSERVER; FINITE-TIME; CONTROLLABILITY; STABILIZATION;
D O I
10.1016/j.automatica.2022.110272
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a control design for semilinear and quasilinear 2 x 2 hyperbolic partial differential equations with the control input at one boundary and a nonlinear ordinary differential equation coupled to the other. The controller can be designed to asymptotically stabilize the system at an equilibrium or relative to a reference signal. Two related but different controllers for semilinear and general quasilinear systems are presented and the additional challenges in quasilinear systems are discussed. Moreover, we present an observer that estimates the distributed PDE state and the unmeasured ODE state from measurements at the actuated boundary only, which can be used to also solve the output feedback control problem.
引用
收藏
页数:9
相关论文
共 26 条
  • [1] [Anonymous], 2000, HYPERBOLIC SYSTEMS C
  • [2] Bastin G, 2016, PROG NONLINEAR DIFFE, V88, P1, DOI 10.1007/978-3-319-32062-5
  • [3] A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws
    Coron, Jean-Michel
    d'Andrea-Novel, Brigitte
    Bastin, Georges
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (01) : 2 - 11
  • [4] LOCAL EXPONENTIAL H2 STABILIZATION OF A 2 x 2 QUASILINEAR HYPERBOLIC SYSTEM USING BACKSTEPPING
    Coron, Jean-Michel
    Vazquez, Rafael
    Krstic, Miroslav
    Bastin, Georges
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) : 2005 - 2035
  • [5] Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems
    Di Meglio, Florent
    Argomedo, Federico Bribiesca
    Hu, Long
    Krstic, Miroslav
    [J]. AUTOMATICA, 2018, 87 : 281 - 289
  • [6] Di Meglio Florent, 2015, 2 IFAC WORKSH AUT CO
  • [7] A continuous-time observer which converges in finite time
    Engel, R
    Kreisselmeier, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) : 1202 - 1204
  • [8] THE EFFECT OF BOUNDARY DAMPING FOR THE QUASILINEAR WAVE-EQUATION
    GREENBERG, JM
    LI, TT
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (01) : 66 - 75
  • [9] Global boundary controllability of the de St. Venant equations between steady states
    Gugat, M
    Leugering, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (01): : 1 - 11
  • [10] Trajectory Tracking Control for a Class of 2x2 Hyperbolic PDE-ODE Systems
    Irscheid, A.
    Gehring, N.
    Rudolph, J.
    [J]. IFAC PAPERSONLINE, 2021, 54 (09): : 416 - 421