Haglund's conjecture on 3-column Macdonald polynomials

被引:11
|
作者
Blasiak, Jonah [1 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
关键词
LLT polynomials; q-Littlewood-Richardson coefficients; Noncommutative Schur functions; Flagged Schur functions; Inversion number; COMBINATORIAL FORMULA; SCHUBERT POLYNOMIALS; SCHUR-FUNCTIONS; OPERATORS;
D O I
10.1007/s00209-015-1612-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a positive combinatorial formula for the Schur expansion of LLT polynomials indexed by a 3-tuple of skew shapes. This verifies a conjecture of Haglund (Proc Natl Acad Sci USA 101(46):16127-16131, 2004). The proof requires expressing a noncommutative Schur function as a positive sum of monomials in Lam's (Eur J Combin 29(1):343-359, 2008) algebra of ribbon Schur operators. Combining this result with the expression of Haglund et al. (J Am Math Soc 18(3):735-761, 2005) for transformed Macdonald polynomials in terms of LLT polynomials then yields a positive combinatorial rule for transformed Macdonald polynomials indexed by a shape with 3 columns.
引用
收藏
页码:601 / 628
页数:28
相关论文
共 3 条
  • [1] Haglund’s conjecture on 3-column Macdonald polynomials
    Jonah Blasiak
    Mathematische Zeitschrift, 2016, 283 : 601 - 628
  • [2] Haglund's conjecture for multi-t Macdonald polynomials
    Lee, Seung Jin
    Oh, Jaeseong
    Rhoades, Brendon
    DISCRETE MATHEMATICS, 2023, 346 (06)
  • [3] REPRESENTATION-THEORETIC INTERPRETATION OF CHEREDNIK-ORR'S RECURSION FORMULA FOR THE SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT T = ∞
    Naito, Satoshi
    Nomoto, Fumihiko
    Sagaki, Daisuke
    TRANSFORMATION GROUPS, 2019, 24 (01) : 155 - 191