Stochastic grid bundling method for backward stochastic differential equations

被引:28
作者
Chau, Ki Wai [1 ]
Oosterlee, Cornelis W. [1 ,2 ]
机构
[1] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[2] Delft Univ Technol, Dept Appl Math, Delft, Netherlands
关键词
SGBM; BSDE; Monte-Carlo; regress-later; bundling; BERMUDAN OPTIONS; THETA-SCHEME; REGRESSION; APPROXIMATION;
D O I
10.1080/00207160.2019.1658868
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we apply the Stochastic Grid Bundling Method (SGBM) to numerically solve backward stochastic differential equations (BSDEs). The SGBM algorithm is based on conditional expectations approximation by means of bundling of Monte Carlo sample paths and a local regress-later regression within each bundle. The basic algorithm for solving the backward stochastic differential equations will be introduced and an upper error bound is established for the local regression. A full error analysis is also conducted for the explicit version of our algorithm and numerical experiments are performed to demonstrate various properties of our algorithm.
引用
收藏
页码:2272 / 2301
页数:30
相关论文
共 22 条
[1]  
Bender C., 2012, NUMERICAL METHODS FI, V12, P257, DOI DOI 10.1007/978-3-642-25746-98
[2]   Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations [J].
Bouchard, B ;
Touzi, N .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (02) :175-206
[3]   Pricing Bermudan options under Merton jump-diffusion asset dynamics [J].
Cong, F. ;
Oosterlee, C. W. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) :2406-2432
[4]   On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights [J].
Crisan, D. ;
Manolarakis, K. ;
Touzi, N. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (07) :1133-1158
[5]   EFFICIENT COMPUTATION OF EXPOSURE PROFILES FOR COUNTERPARTY CREDIT RISK [J].
De Graaf, Cornelis S. L. ;
Feng, Qian ;
Kandhai, Drona ;
Oosterlee, Cornelis W. .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2014, 17 (04)
[6]   A regression-based numerical scheme for backward stochastic differential equations [J].
Ding, Deng ;
Li, Xiaofei ;
Liu, Yiqi .
COMPUTATIONAL STATISTICS, 2017, 32 (04) :1357-1373
[7]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[8]  
Glasserman P, 2004, MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, P213
[9]   A regression-based Monte Carlo method to solve backward stochastic differential equations [J].
Gobet, E ;
Lemor, JP ;
Warin, X .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (03) :2172-2202
[10]   STRATIFIED REGRESSION MONTE-CARLO SCHEME FOR SEMILINEAR PDEs AND BSDEs WITH LARGE SCALE PARALLELIZATION ON GPUs [J].
Gobet, E. ;
Lopez-Salas, J. G. ;
Turkedjiev, P. ;
Vazquez, C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06) :C652-C677