Research on intelligent fault diagnosis of mechanical equipment based on sparse deep neural networks

被引:21
|
作者
Qin, Fei-Wei [1 ]
Bai, Jing [2 ]
Yuan, Wen-Qiang [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[2] Beifang Univ Nationalities, Sch Comp Sci & Engn, Yinchuan, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; accuracy rate; sparse deep neural networks; fault diameters; excitation loads; CLASSIFICATION; ALGORITHM;
D O I
10.21595/jve.2017.17146
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the big data background, the accuracy of fault diagnosis and recognition has been difficult to be improved. The deep neural network was used to recognize the diagnosis rate of the bearing with four kinds of conditions and compared with traditional BP neural network, genetic neural network and particle swarm neural network. Results showed that the diagnosis accuracy and convergence rate of the deep neural network were obviously higher than those of other models. Fault diagnosis rates with different sample sizes and training sample proportions were then studied to compare with the latest reported methods. Results showed that fault diagnosis had a good stability using deep neural networks. Vibration accelerations of the bearing with different fault diameters and excitation loads were extracted. The deep neural network was used to recognize these faults. Diagnosis accuracy was very high. In particular, the fault diagnosis rate was 98 % when signal features of vibration accelerations were very obvious, which indicated that using deep neural network was effective in diagnosing and recognizing different types of faults. Finally, the deep neural network was used to conduct fault diagnosis for the gearbox of wind turbines and compared with the other models to present that it would work well in the industrial environment.
引用
收藏
页码:2439 / 2455
页数:17
相关论文
共 50 条
  • [1] Evolving Deep Echo State Networks for Intelligent Fault Diagnosis
    Long, Jianyu
    Zhang, Shaohui
    Li, Chuan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (07) : 4928 - 4937
  • [2] Deep Transfer Learning Based on Convolutional Neural Networks for Intelligent Fault Diagnosis of Spacecraft
    Xiang, Gang
    Chen, Wenjing
    Peng, Yu
    Wang, Yuanjin
    Qu, Chen
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5522 - 5526
  • [3] Hierarchical Diagnosis Network Based on Sparse Deep Neural Networks and Its Application in Bearing Fault Diagnosis
    Qi, Yumei
    You, Wei
    Shen, Changqing
    Jiang, Xingxing
    Huang, Weiguo
    Zhu, Zhongkui
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 894 - 900
  • [4] Image deep learning in fault diagnosis of mechanical equipment
    Wang, Chuanhao
    Sun, Yongjian
    Wang, Xiaohong
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (06) : 2475 - 2515
  • [5] Research on Mechanical Equipment Fault Diagnosis Method Based on Deep Learning and Information Fusion
    Jiang, Dongnian
    Wang, Zhixuan
    SENSORS, 2023, 23 (15)
  • [6] Supervised-Learning-Based Intelligent Fault Diagnosis for Mechanical Equipment
    Hong, Geonkyo
    Suh, Dongjun
    IEEE ACCESS, 2021, 9 (09): : 116147 - 116162
  • [7] A Deep Neural Network Based Robust Intelligent Strategy for Microgrid Fault Diagnosis
    Bhuiyan, Erphan A.
    Fahim, Shahriar Rahman
    Sarker, Subrata K.
    Das, Sajal K.
    Islam, Md Rabiul
    Muttaqi, Kashem
    2021 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS), 2021,
  • [8] Deep neural networks-based rolling bearing fault diagnosis
    Chen, Zhiqiang
    Deng, Shengcai
    Chen, Xudong
    Li, Chuan
    Sanchez, Rene-Vinicio
    Qin, Huafeng
    MICROELECTRONICS RELIABILITY, 2017, 75 : 327 - 333
  • [9] Fault Diagnosis Method Research of Mechanical Equipment Based on Sensor Correlation Analysis and Deep Learning
    Bai, Tangbo
    Yang, Jianwei
    Duan, Lixiang
    Wang, Yanxue
    SHOCK AND VIBRATION, 2020, 2020
  • [10] Fault Diagnosis Based on Non-Negative Sparse Constrained Deep Neural Networks and Dempster-Shafer Theory
    Zhang, Zhuo
    Jiang, Wen
    Geng, Jie
    Deng, Xinyang
    Li, Xiang
    IEEE ACCESS, 2020, 8 : 18182 - 18195