Fuzzy indication of reliability in metagenomics NGS data analysis

被引:0
|
作者
Krachunov, Milko [1 ]
Vassilev, Dimitar [2 ]
Nisheva, Maria [1 ]
Kulev, Ognyan [1 ]
Simeonova, Valeriya [1 ]
Dimitrov, Vladimir [1 ]
机构
[1] Univ Sofia, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
[2] AgroBioInstitute, Bioinformat Grp, Sofia 1164, Bulgaria
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE | 2015年 / 51卷
关键词
next-generation sequencing; metagenomics; artificial intelligence; neural networks; fuzzy sets; error detection;
D O I
10.1016/j.procs.2015.05.448
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
NGS data processing in metagenomics studies has to deal with noisy data that can contain a large amount of reading errors which are difficult to detect and account for. This work introduces a fuzzy indicator of reliability technique to facilitate solutions to this problem. It includes modified Hamming and Levenshtein distance functions that are aimed to be used as drop-in replacements in NGS analysis procedures which rely on distances, such as phylogenetic tree construction. The distances utilise fuzzy sets of reliable bases or an equivalent fuzzy logic, potentially aggregating multiple sources of base reliability.
引用
收藏
页码:2859 / 2863
页数:5
相关论文
共 50 条
  • [31] A Metagenomics Analysis of Rumen Microbiome
    Walsh, Paul
    Palu, Cintia
    Kelly, Brian
    Lawor, Brendan
    Wassan, Jyotsna Talreja
    Zheng, Huiru
    Wang, Haiying
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 2077 - 2082
  • [32] Probabilistic and fuzzy reliability analysis of a sample slope near Aliano
    Giasi, CI
    Masi, P
    Cherubini, C
    ENGINEERING GEOLOGY, 2003, 67 (3-4) : 391 - 402
  • [33] Quality control of microbiota metagenomics by k-mer analysis
    Florian Plaza Onate
    Jean-Michel Batto
    Catherine Juste
    Jehane Fadlallah
    Cyrielle Fougeroux
    Doriane Gouas
    Nicolas Pons
    Sean Kennedy
    Florence Levenez
    Joel Dore
    S Dusko Ehrlich
    Guy Gorochov
    Martin Larsen
    BMC Genomics, 16
  • [34] Impact of Early Feeding: Metagenomics Analysis of the Infant Gut Microbiome
    Di Guglielmo, Matthew D.
    Franke, Karl R.
    Robbins, Alan
    Crowgey, Erin L.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 12
  • [35] Quality control of microbiota metagenomics by k-mer analysis
    Onate, Florian Plaza
    Batto, Jean-Michel
    Juste, Catherine
    Fadlallah, Jehane
    Fougeroux, Cyrielle
    Gouas, Doriane
    Pons, Nicolas
    Kennedy, Sean
    Levenez, Florence
    Dore, Joel
    Ehrlich, S. Dusko
    Gorochov, Guy
    Larsen, Martin
    BMC GENOMICS, 2015, 16
  • [36] subMG automates data submission for metagenomics studies
    Tom Tubbesing
    Andreas Schlüter
    Alexander Sczyrba
    BioData Mining, 18 (1)
  • [37] Bracken: estimating species abundance in metagenomics data
    Lu, Jennifer
    Breitwieser, Florian P.
    Thielen, Peter
    Salzberg, Steven L.
    PEERJ COMPUTER SCIENCE, 2017,
  • [38] Interpretable and accurate prediction models for metagenomics data
    Prifti, Edi
    Chevaleyre, Yann
    Hanczar, Blaise
    Belda, Eugeni
    Danchin, Antoine
    Clement, Karine
    Zucker, Jean-Daniel
    GIGASCIENCE, 2020, 9 (03):
  • [39] Comparison of two NGS platforms for metagenomic analysis of clinical samples
    Biagini, Tommaso
    Bartolini, Barbara
    Giombini, Emanuela
    Ferre, Fabrizio
    Selleri, Marina
    Rozera, Gabriella
    Capobianchi, Maria R.
    Chillemi, Giovanni
    Desideri, Alessandro
    JOURNAL OF BIOCHEMICAL TECHNOLOGY, 2016, 7 (03) : 1093 - 1101
  • [40] Random and fuzzy sets in coarse data analysis
    Nguyen, Hung T.
    Wu, Berlin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (01) : 70 - 85