Joint Learning of Super-Resolution and Perceptual Image Enhancement for Single Image

被引:4
|
作者
Xu, Yifei [1 ,4 ]
Zhang, Nuo [1 ]
Li, Li [2 ]
Sang, Genan [2 ]
Zhang, Yuewan [1 ]
Wang, Zhengyang [1 ]
Wei, Pingping [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software, Xian 710054, Peoples R China
[2] Alltuu Inc, Hangzhou 311100, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710054, Peoples R China
[4] Huiyichen Inc, Nanchang 330038, Jiangxi, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Image color analysis; Task analysis; Image reconstruction; Image enhancement; Deep learning; Convolution; Visualization; Super resolution; perceptual image enhancement; lightweight;
D O I
10.1109/ACCESS.2021.3068861
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Super resolution (SR) and Perceptual Image Enhancement (PIE) are gaining more and more interests in digital image processing and have been studied independently in the past decades. Although plenty of state-of-the-art researches have demonstrated great improvement in SR problem, they neglect practical requirements in real-world application. In practice, these two tasks are always mixed and combined to obtain a high-resolution enhanced (HRE) image with high quality from a low-resolution original image (LRO) with low quality. In this paper, we propose a joint SR-PIE learning framework called Deep SR-PIE, which comprises Multi-scale Backward Fusion Network (MBFNet), Perceptual Enhancement Network (PENet) and Dual-Path Unsampling Network (DUNet). MBFNet network is responsible for deep feature representation for further image reconstruction and perceptual enhancement, and PENet seeks the optimal local transformation to recover perceptual loss (color, tone, exposure and so on). DUNet works in different scales and exchanges each other to complement more details during upsampling. In our experiments, a real-world dataset is released to facilitate the development of joint learning for SR and PIE. Then, a thorough ablation study is provided to better understand the superiority of our method. Finally, extensive experiments suggest that the proposed method performs favorably against the state-of-the-arts in terms of visual quality, PSRN, SSIM, model size and inference time. By virtue of splitting operation and inverse residual blocks, as a lightweight deep neural network, our model is compatible with low-computation device.
引用
收藏
页码:48446 / 48461
页数:16
相关论文
共 50 条
  • [31] Learning a Mixture of Deep Networks for Single Image Super-Resolution
    Liu, Ding
    Wang, Zhaowen
    Nasrabadi, Nasser
    Huang, Thomas
    COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 : 145 - 156
  • [32] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [33] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [34] Learning Dynamic Generative Attention for Single Image Super-Resolution
    Chen, Rui
    Zhang, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8368 - 8382
  • [35] Recent Advances in Deep Learning for Single Image Super-Resolution
    Zhang, Yungang
    Xiang, Yu
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 85 - 95
  • [36] Fast Learning-Based Single Image Super-Resolution
    Kumar, Neeraj
    Sethi, Amit
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1504 - 1515
  • [37] EXTERNAL AND INTERNAL LEARNING FOR SINGLE-IMAGE SUPER-RESOLUTION
    Wang, Shuang
    Lin, Shaopeng
    Liang, Xuefeng
    Yue, Bo
    Jiao, Licheng
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 128 - 132
  • [38] The 2018 PIRM Challenge on Perceptual Image Super-Resolution
    Blau, Yochai
    Mechrez, Roey
    Timofte, Radu
    Michaeli, Tomer
    Zelnik-Manor, Lihi
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 334 - 355
  • [39] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, (04) : 413 - 426
  • [40] Learning recurrent residual regressors for single image super-resolution
    Zhang, Kaibing
    Wang, Zhen
    Li, Jie
    Gao, Xinbo
    Xiong, Zenggang
    SIGNAL PROCESSING, 2019, 154 : 324 - 337