Joint Learning of Super-Resolution and Perceptual Image Enhancement for Single Image

被引:4
|
作者
Xu, Yifei [1 ,4 ]
Zhang, Nuo [1 ]
Li, Li [2 ]
Sang, Genan [2 ]
Zhang, Yuewan [1 ]
Wang, Zhengyang [1 ]
Wei, Pingping [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software, Xian 710054, Peoples R China
[2] Alltuu Inc, Hangzhou 311100, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710054, Peoples R China
[4] Huiyichen Inc, Nanchang 330038, Jiangxi, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Image color analysis; Task analysis; Image reconstruction; Image enhancement; Deep learning; Convolution; Visualization; Super resolution; perceptual image enhancement; lightweight;
D O I
10.1109/ACCESS.2021.3068861
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Super resolution (SR) and Perceptual Image Enhancement (PIE) are gaining more and more interests in digital image processing and have been studied independently in the past decades. Although plenty of state-of-the-art researches have demonstrated great improvement in SR problem, they neglect practical requirements in real-world application. In practice, these two tasks are always mixed and combined to obtain a high-resolution enhanced (HRE) image with high quality from a low-resolution original image (LRO) with low quality. In this paper, we propose a joint SR-PIE learning framework called Deep SR-PIE, which comprises Multi-scale Backward Fusion Network (MBFNet), Perceptual Enhancement Network (PENet) and Dual-Path Unsampling Network (DUNet). MBFNet network is responsible for deep feature representation for further image reconstruction and perceptual enhancement, and PENet seeks the optimal local transformation to recover perceptual loss (color, tone, exposure and so on). DUNet works in different scales and exchanges each other to complement more details during upsampling. In our experiments, a real-world dataset is released to facilitate the development of joint learning for SR and PIE. Then, a thorough ablation study is provided to better understand the superiority of our method. Finally, extensive experiments suggest that the proposed method performs favorably against the state-of-the-arts in terms of visual quality, PSRN, SSIM, model size and inference time. By virtue of splitting operation and inverse residual blocks, as a lightweight deep neural network, our model is compatible with low-computation device.
引用
收藏
页码:48446 / 48461
页数:16
相关论文
共 50 条
  • [21] Coupled Adversarial Learning for Single Image Super-Resolution
    Hsu, Chih-Chung
    Huang, Kuan-Yu
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [22] A Two-Stage Attentive Network for Single Image Super-Resolution
    Zhang, Jiqing
    Long, Chengjiang
    Wang, Yuxin
    Piao, Haiyin
    Mei, Haiyang
    Yang, Xin
    Yin, Baocai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1020 - 1033
  • [23] Multi-Grained Attention Networks for Single Image Super-Resolution
    Wu, Huapeng
    Zou, Zhengxia
    Gui, Jie
    Zeng, Wen-Jun
    Ye, Jieping
    Zhang, Jun
    Liu, Hongyi
    Wei, Zhihui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 512 - 522
  • [24] Learn to Zoom in Single Image Super-Resolution
    Zhang, Zili
    Favaro, Paolo
    Tian, Yan
    Li, Jianxiang
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1237 - 1241
  • [25] Benchmark of deep learning models for single image super-resolution (SISR)
    Soufi, Omar
    Aarab, Zineb
    Belouadha, Fatima-Zahra
    2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 558 - 565
  • [26] SUPER-RESOLUTION BY IMAGE ENHANCEMENT USING TEXTURE TRANSFER
    Ople, Jose Jaena Mani
    Lan, Daniel Stanley
    Azcarraga, Arnulfo
    Yang, Chao-Lung
    Hua, Kai-Lung
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 953 - 957
  • [27] Channel Graph Convolutional Networks for Animation Image Super-Resolution
    Wang, Fuchun
    Wang, Kesheng
    Song, Lei
    IEEE ACCESS, 2024, 12 : 197577 - 197588
  • [28] Deep Learning Algorithms for Single Image Super-Resolution: A Systematic Review
    Ooi, Yoong Khang
    Ibrahim, Haidi
    ELECTRONICS, 2021, 10 (07)
  • [29] Collaborative Framework for Underwater Object Detection via Joint Image Enhancement and Super-Resolution
    Ji, Xun
    Liu, Guo-Peng
    Cai, Cheng-Tao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (09)
  • [30] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918