Short term load forecasting with markovian switching distributed deep belief networks

被引:30
作者
Dong, Yi [1 ]
Dong, Zhen [1 ]
Zhao, Tianqiao [2 ]
Li, Zhongguo [1 ]
Ding, Zhengtao [1 ]
机构
[1] Univ Manchester, Dept Elect & Elect Engn, Manchester M13 9PL, Lancs, England
[2] Southern Methodist Univ, Dept Elect & Comp Engn, Dallas, TX 75275 USA
关键词
Short term load forecasting; Electricity load demand; Distributed deep belief networks; Distributed solution; Markovian switching consensus algorithm; ENSEMBLE APPROACH; ELECTRICITY LOAD; NEURAL-NETWORK;
D O I
10.1016/j.ijepes.2021.106942
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In modern power systems, centralised short term load forecasting (STLF) methods raise concern on high communication requirements and reliability when a central controller undertakes the processing of massive load data solely. As an alternative, distributed methods avoid the problems mentioned above, whilst the possible issues of cyberattacks and uncertain forecasting accuracy still exist. To address the two issues, a novel distributed deep belief networks (DDBN) with Markovian switching topology is proposed for an accurate STLF, based on a completely distributed framework. Without the central governor, the load dataset is separated and the model is trained locally, while obtaining the updates through communication with stochastic neighbours under a designed consensus procedure, and therefore significantly reduced the training time. The overall network reliability against cyberattacks is enhanced by continually switching communication topologies. In the meanwhile, to ensure that the distributed structure is still stable under such a varying topology, the consensus controller gain is delicately designed, and the convergence of the proposed algorithm is theoretically analysed via the Lyapunov function. Besides, restricted Boltzmann machines (RBM) based unsupervised learning is employed for DDBN initialisation and thereby guaranteeing the success rate of STLF model training. GEFCom 2017 competition and ISO New England load datasets are applied to validate the accuracy and effectiveness of the proposed method. Experiment results demonstrate that the proposed DDBN algorithm can enhance around 19% better forecasting accuracy than centralised DBN algorithm.
引用
收藏
页数:9
相关论文
共 40 条
[1]   A New Feature Selection Technique for Load and Price Forecast of Electrical Power Systems [J].
Abedinia, Oveis ;
Amjady, Nima ;
Zareipour, Hamidreza .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (01) :62-74
[2]   Optimum control strategies for short term load forecasting in smart grids [J].
Ali, Mansoor ;
Adnan, Muhammad ;
Tariq, Muhammad .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 113 :792-806
[3]  
[Anonymous], 2018, IEEE T SMART GRID
[4]   A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India [J].
Barman, Mayur ;
Choudhury, N. B. Dev ;
Sutradhar, Suman .
ENERGY, 2018, 145 :710-720
[5]  
Bengio Y., 2006, NIPS 2006 P 19 INT C, P153, DOI DOI 10.7551/MITPRESS/7503.003.0024
[6]   Observer-based consensus of second-order multi-agent system with fixed and stochastically switching topology via sampled data [J].
Chen, Weisheng ;
Li, Xiaobo .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (03) :567-584
[7]   Machine Learning-Based Anomaly Detection for Load Forecasting Under Cyberattacks [J].
Cui, Mingjian ;
Wang, Jianhui ;
Yue, Meng .
IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) :5724-5734
[8]   Deep belief network based electricity load forecasting: An analysis of Macedonian case [J].
Dedinec, Aleksandra ;
Filiposka, Sonja ;
Dedinec, Aleksandar ;
Kocarev, Ljupco .
ENERGY, 2016, 115 :1688-1700
[9]   A survey on security control and attack detection for industrial cyber-physical systems [J].
Ding, Derui ;
Han, Qing-Long ;
Xiang, Yang ;
Ge, Xiaohua ;
Zhang, Xian-Ming .
NEUROCOMPUTING, 2018, 275 :1674-1683
[10]   Forecasting electricity load by a novel recurrent extreme learning machines approach [J].
Ertugrul, Omer Faruk .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 78 :429-435