Sensing with nanopores - the influence of asymmetric blocking on electrochemical redox cycling current

被引:3
|
作者
Krause, Kay J. [1 ,2 ]
Kaetelhoen, Enno [3 ]
Lemay, Serge G. [4 ]
Compton, Richard G. [3 ]
Wolfrum, Bernhard [1 ,2 ,5 ]
机构
[1] Forschungszentrum Julich, Inst Bioelect PGI ICS 8 8, D-52425 Julich, Germany
[2] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany
[3] Univ Oxford, Phys & Theoret Chem Lab, Dept Chem, Oxford OX1 3QZ, England
[4] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[5] Rhein Westfal TH Aachen, Inst Phys, D-52074 Aachen, Germany
关键词
SELECTIVE DETECTION; ELECTRODE STRUCTURES; ARRAY ELECTRODES; DOPAMINE; SENSORS; FABRICATION; MOLECULES; VOLUMES; DEVICE;
D O I
10.1039/c4an01401d
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nanoporous redox cycling devices are highly efficient tools for the electrochemical sensing of redox-active molecules. By using a redox-active mediator, this concept can be exploited for the detection of molecular binding events via blocking of the redox cycling current within the nanopores. Here, we investigate the influence of different blocking scenarios inside a nanopore on the resulting redox cycling current. Our analysis is based on random walk simulations and finite element calculations. We distinguish between symmetric and asymmetric pore blocking and show that the current decrease is more pronounced in the case of asymmetric blocking reflecting the diffusion-driven pathway of the redox-active molecules. Using random walk simulations, we further study the impact of pore blocking in the frequency domain and identify relevant features of the power spectral density, which are of particular interest for sensing applications based on fluctuation analysis.
引用
收藏
页码:5499 / 5503
页数:5
相关论文
共 50 条
  • [1] Electrochemical sensing with nanopores: A mini review
    Makra, Istvan
    Gyurcsanyi, Robert E.
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 43 : 55 - 59
  • [2] On-chip redox cycling techniques for electrochemical detection
    Kaetelhoen, Enno
    Wolfrum, Bernhard
    REVIEWS IN ANALYTICAL CHEMISTRY, 2012, 31 (01) : 7 - 14
  • [3] Redox Cycling in Individually Encapsulated Attoliter-Volume Nanopores
    Kwon, Seung-Ryong
    Fu, Kaiyu
    Han, Donghoon
    Bohn, Paul W.
    ACS NANO, 2018, 12 (12) : 12923 - 12931
  • [4] Electrochemical Redox Cycling with Pyrolytic Carbon Stacked-Layer Nanogap Electrodes
    Stovring, Nicolai
    Heiskanen, Arto R.
    Emneus, Jenny
    Sylvest Keller, Stephan
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (09) : 14375 - 14388
  • [5] Redox cycling in nanoporous electrochemical devices
    Hueske, Martin
    Stockmann, Regina
    Offenhaeusser, Andreas
    Wolfrum, Bernhard
    NANOSCALE, 2014, 6 (01) : 589 - 598
  • [6] Redox cycling in nanogap electrochemical cells
    White, Henry S.
    McKelvey, Kim
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 7 : 48 - 53
  • [7] Local Redox-cycling-based Electrochemical System for Bioimaging
    Ino, Kosuke
    Shiku, Hitoshi
    Matsue, Tomokazu
    BUNSEKI KAGAKU, 2015, 64 (09) : 669 - 678
  • [8] Electrochemical redox cycling in a new nanogap sensor: Design and simulation
    Zafarani, Hamid Reza
    Mathwig, Klaus
    Sudholter, Ernst J. R.
    Rassaei, Liza
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 760 : 42 - 47
  • [9] Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems
    Wolfrum, Bernhard
    Kaetelhoen, Enno
    Yakushenko, Alexey
    Krause, Kay J.
    Adly, Nouran
    Hueske, Martin
    Rinklin, Philipp
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (09) : 2031 - 2040
  • [10] A simple method to fabricate electrochemical sensor systems with predictable high-redox cycling amplification
    Straver, M. G.
    Odijk, M.
    Olthuis, W.
    van den Berg, A.
    LAB ON A CHIP, 2012, 12 (08) : 1548 - 1553