Moire localization in two-dimensional quasiperiodic systems

被引:21
作者
Huang, Biao [1 ]
Liu, W. Vincent [1 ,2 ,3 ]
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[2] Shanghai Jiao Tong Univ, Sch Phys & Astron, Wilczek Quantum Ctr, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, TD Lee Inst, Shanghai 200240, Peoples R China
关键词
MANY-BODY LOCALIZATION; TRANSITION; GRAPHENE; FERMIONS; STATES;
D O I
10.1103/PhysRevB.100.144202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss a two-dimensional system under the perturbation of a moire potential, which takes the same geometry and lattice constant as the underlying lattices but mismatches up to relative rotation. Such a self-dual model belongs to the orthogonal class of a quasiperiodic system whose features have been evasive in previous studies. We find that such systems enjoy the same scaling exponent as the one-dimensional Aubry-Andre model nu approximate to 1, which saturates the Harris bound nu > 2/d = 1 in two dimensions. Meanwhile, there exists a continuous and rapid change for the inverse participation ratio in the eigenstate-disorder plane, different from the typical one-dimensional situation where only a few or no steplike contours show up. An experimental scheme based on optical lattices is discussed. It allows for using lasers of arbitrary wavelengths and therefore is more applicable than the one-dimensional situations requiring laser wavelengths close to certain incommensurate ratios.
引用
收藏
页数:12
相关论文
共 42 条
  • [1] Colloquium: Many-body localization, thermalization, and entanglement
    Abanin, Dmitry A.
    Altman, Ehud
    Bloch, Immanuel
    Serbyn, Maksym
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
  • [2] Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles
    Atas, Y. Y.
    Bogomolny, E.
    Giraud, O.
    Roux, G.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (08)
  • [3] Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
  • [4] Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states
    Basko, DM
    Aleiner, IL
    Altshuler, BL
    [J]. ANNALS OF PHYSICS, 2006, 321 (05) : 1126 - 1205
  • [5] Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems
    Bordia, Pranjal
    Lueschen, Henrik
    Scherg, Sebastian
    Gopalakrishnan, Sarang
    Knap, Michael
    Schneider, Ulrich
    Bloch, Immanuel
    [J]. PHYSICAL REVIEW X, 2017, 7 (04):
  • [6] Unconventional superconductivity in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Fang, Shiang
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 43 - +
  • [7] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [8] QUANTUM SIMULATION Exploring the many-body localization transition in two dimensions
    Choi, Jae-yoon
    Hild, Sebastian
    Zeiher, Johannes
    Schauss, Peter
    Rubio-Abadal, Antonio
    Yefsah, Tarik
    Khemani, Vedika
    Huse, David A.
    Bloch, Immanuel
    Gross, Christian
    [J]. SCIENCE, 2016, 352 (6293) : 1547 - 1552
  • [9] Long-time Behavior of Isolated Periodically Driven Interacting Lattice Systems
    D'Alessio, Luca
    Rigol, Marcos
    [J]. PHYSICAL REVIEW X, 2014, 4 (04):
  • [10] Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices
    Dean, C. R.
    Wang, L.
    Maher, P.
    Forsythe, C.
    Ghahari, F.
    Gao, Y.
    Katoch, J.
    Ishigami, M.
    Moon, P.
    Koshino, M.
    Taniguchi, T.
    Watanabe, K.
    Shepard, K. L.
    Hone, J.
    Kim, P.
    [J]. NATURE, 2013, 497 (7451) : 598 - 602