Solitary wave solutions of time-space nonlinear fractional Schrodinger's equation: Two analytical approaches

被引:60
作者
Hashemi, M. S. [1 ]
Akgul, Ali [2 ]
机构
[1] Univ Bonab, Basic Sci Fac, Dept Math, POB 55517-61167, Bonab, Iran
[2] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkey
关键词
Nonlinear Schrodinger equation; Nucci method; Simplest equation method; Soliton solutions; LIE SYMMETRY ANALYSIS; NONCLASSICAL SYMMETRIES; DIFFERENTIAL-EQUATIONS; INVARIANT ANALYSIS; FISHER EQUATION; DIMENSION;
D O I
10.1016/j.cam.2017.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper obtains analytical solution of nonlinear Schrodinger equation in both time and space fractional terms. Two analytical approaches, Nucci's reduction method and simplest equation method are utilized to extract analytical solutions specially of soliton kinds. The Kerr law, power law, parabolic law, dual-power law and log law nonlinearities are considered separately. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 160
页数:14
相关论文
共 50 条
  • [31] Dynamical behavior and exact solutions for time-fractional nonlinear Schrodinger equation with parabolic law nonlinearity
    Chen, Cheng
    Jiang, Yaolin
    Wang, Zuolei
    Wu, Juanjuan
    OPTIK, 2020, 222
  • [32] NOVEL NUMERICAL METHODS FOR SOLVING THE TIME-SPACE FRACTIONAL DIFFUSION EQUATION IN TWO DIMENSIONS
    Yang, Qianqian
    Turner, Ian
    Liu, Fawang
    Ilic, Milos
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03) : 1159 - 1180
  • [33] LONG-TIME SIMULATIONS OF ROGUE WAVE SOLUTIONS IN THE NONLINEAR SCHRODINGER EQUATION
    ZHENG, C. H. E. N. X., I
    TANG, S. H. A. O. Q. I. A. N. G.
    METHODS AND APPLICATIONS OF ANALYSIS, 2022, 29 (01) : 149 - 160
  • [34] Traveling wave solutions for complex nonlinear space-time fractional order (2
    Apeanti, Wilson Osafo
    Lu, Dianchen
    Zhang, Hong
    Yaro, David
    Akuamoah, Saviour Worlanyo
    SN APPLIED SCIENCES, 2019, 1 (06):
  • [35] Tsallis' maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schrodinger equation
    Curilef, S.
    Plastino, A. R.
    Plastino, A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (11) : 2631 - 2642
  • [36] Exact traveling wave solutions to the nonlinear Schrodinger equation
    Abdoulkary, Saidou
    Mohamadou, Alidou
    Beda, Tibi
    Gambo, Betchewe
    Doka, Serge Y.
    Alim
    Mahamoudou, Aboubakar
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 109 - 115
  • [37] Solution of a Time-Space Tempered Fractional Diffusion-Wave Equation and its Theoretical Aspects
    Verma, Pratibha
    Tiwari, Surabhi
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2025, 41 (01): : 1 - 26
  • [38] Localized Nonlinear Waves in Nonlinear Schrodinger Equation with Nonlinearities Modulated in Space and Time
    Chen, Junchao
    Li, Biao
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (12): : 728 - 734
  • [39] Fractional difference/finite element approximations for the time-space fractional telegraph equation
    Zhao, Zhengang
    Li, Changpin
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (06) : 2975 - 2988
  • [40] A double optical solitary wave in a nonlinear Schrodinger-type equation
    Yin Jiu-Li
    Ding Shan-Yu
    CHINESE PHYSICS B, 2013, 22 (06)