Solitary wave solutions of time-space nonlinear fractional Schrodinger's equation: Two analytical approaches

被引:61
作者
Hashemi, M. S. [1 ]
Akgul, Ali [2 ]
机构
[1] Univ Bonab, Basic Sci Fac, Dept Math, POB 55517-61167, Bonab, Iran
[2] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkey
关键词
Nonlinear Schrodinger equation; Nucci method; Simplest equation method; Soliton solutions; LIE SYMMETRY ANALYSIS; NONCLASSICAL SYMMETRIES; DIFFERENTIAL-EQUATIONS; INVARIANT ANALYSIS; FISHER EQUATION; DIMENSION;
D O I
10.1016/j.cam.2017.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper obtains analytical solution of nonlinear Schrodinger equation in both time and space fractional terms. Two analytical approaches, Nucci's reduction method and simplest equation method are utilized to extract analytical solutions specially of soliton kinds. The Kerr law, power law, parabolic law, dual-power law and log law nonlinearities are considered separately. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 160
页数:14
相关论文
共 40 条
[1]   A meshfree method for the solution of two-dimensional cubic nonlinear Schrodinger equation [J].
Abbasbandy, S. ;
Ghehsareh, H. Roohani ;
Hashim, I. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (06) :885-898
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
Azimi-Kavar S, 2017, J ADV PHYS, V6, P297, DOI 10.1166/jap.2017.1330
[4]   Optical soliton perturbation in non-Kerr law media: Traveling wave solution [J].
Biswas, Anjan ;
Fessak, Megan ;
Johnson, Stephen ;
Beatrice, Siercke ;
Milovic, Daniela ;
Jovanoski, Zlatko ;
Kohl, Russell ;
Majid, Fayequa .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (01) :263-268
[5]   An extended subequation rational expansion method with symbolic computation and solutions of the nonlinear Schrodinger equation model [J].
Chen, Yong ;
Li, Biao .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (02) :242-255
[6]  
Diethelm K., 2010, LECT NOTES MATH
[7]  
Dodd R.K., 1982, Solitons and Nonlinear Wave Equations
[8]   A numerical method for the fractional Schrodinger type equation of spatial dimension two [J].
Ford, Neville J. ;
Manuela Rodrigues, M. ;
Vieira, Nelson .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) :454-468
[9]   Solving the time-fractional Schrodinger equation by Krylov projection methods [J].
Garrappa, Roberto ;
Moret, Igor ;
Popolizio, Marina .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :115-134
[10]  
Hasegawa A., 1992, OPTICAL SOLITONS FIB