Mixed multiscale finite element methods using approximate global information based on partial upscaling

被引:16
作者
Jiang, Lijian [1 ,2 ]
Efendiev, Yalchin [3 ]
Mishev, IIya [4 ]
机构
[1] Univ Minnesota, IMA, Minneapolis, MN 55455 USA
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Exxonmobil Upstream Res Co, Houston, TX 77252 USA
基金
美国国家科学基金会;
关键词
Mixed multiscale finite elements; Upscaling; Homogenization; Two-phase flows; Porous media; ELLIPTIC PROBLEMS; FLOW;
D O I
10.1007/s10596-009-9165-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308-317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods.
引用
收藏
页码:319 / 341
页数:23
相关论文
共 29 条
[11]   GENERALIZED FINITE-ELEMENT METHODS - THEIR PERFORMANCE AND THEIR RELATION TO MIXED METHODS [J].
BABUSKA, I ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (03) :510-536
[12]  
Brezzi F, 2000, CH CRC RES NOTES, V420, P69
[13]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[14]   A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations [J].
Chen, Y ;
Durlofsky, LJ ;
Gerritsen, M ;
Wen, XH .
ADVANCES IN WATER RESOURCES, 2003, 26 (10) :1041-1060
[15]  
Chen ZM, 2003, MATH COMPUT, V72, P541, DOI 10.1090/S0025-5718-02-01441-2
[16]   Tenth SPE comparative solution project: A comparison of upscaling techniques [J].
Christie, MA ;
Blunt, MJ .
SPE RESERVOIR EVALUATION & ENGINEERING, 2001, 4 (04) :308-317
[17]   An adaptive local-global multiscale finite volume element method for two-phase flow simulations [J].
Durlofsky, L. J. ;
Efendiev, Y. ;
Ginting, V. .
ADVANCES IN WATER RESOURCES, 2007, 30 (03) :576-588
[19]   Accurate multiscale finite element methods for two-phase flow simulations [J].
Efendiev, Y. ;
Ginting, V. ;
Hou, T. ;
Ewing, R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 220 (01) :155-174
[20]  
Efendiev Y., 2004, COMMUN MATH SCI, V2, P553, DOI [DOI 10.4310/CMS.2004.V2.N4.A2, DOI 10.4310/CMS]