Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries

被引:57
|
作者
Son, Dong-Kyu [1 ]
Kim, Jisu [1 ]
Raj, Michael Ruby [1 ]
Lee, Gibaek [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Adv Energy Mat Design Lab, Chem Engn Energy, Gyongsan 38541, South Korea
关键词
Expanded graphite; Thermal exfoliation process; Shrinkage interlayer distance; Turbostratic ordered structures; Lithium-ion batteries; X-RAY-DIFFRACTION; ENERGY-STORAGE; INTERCALATION; GRAPHENE; CARBON; ELECTRODES; METAL; LI; NANOPARTICLES; SIZE;
D O I
10.1016/j.carbon.2021.01.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the systematic thermal exfoliation of expandable graphite was investigated to determine the optimum temperature for high volume of expansion and to enlarge the interlayer spacing distance (d-spacing) of expanded graphite (EG). The structural redox behaviors of nanostructured EGs as high-rate anodes for Li-ion storage were thoroughly investigated using various analyses, including an analysis of the electrochemical Li-ion de/intercalation kinetics (structure-dependent Li-ion transport properties) in lithium-ion batteries (LIBs). According to SEM and XRD analyses, all the EG samples exhibit a worm-like morphology containing honeycomb-like micro-pores, and highly crystalline structure with a shrinkage in the d-spacing. Interestingly, EG that is heat-treated for 30 min (EG30) exhibits the largest shrinkage with a d-spacing of 3.37 angstrom and a crystallite size of 20.96 nm at the optimal thermal exfoliation temperature of 600 degrees C while retaining analogous long-range-ordered graphitic layers/sheets. Moreover, EG30 exhibited excellent performance in LIBs, with an extremely high average reversible specific capacity of similar to 338 mAh g(-1) at a current density of 100 mA g(-1), a high rate capability of similar to 112 mAh g(-1) even at an ultra-high rate of 3 A g(-1), and a Coulombic efficiency of approximately 100%. The results obtained herein demonstrate that subtle changes in the thermal exfoliation time significantly affect both the honeycomb-like microstructure and Li-ion reversible de/intercalation kinetics of the EG samples, which leading to entirely different staged phase transitions. The shrinkage in the d-spacing of EG as well as crystallite orientation by thermal exfoliation provide new insights for the design and development of EG, which can be exploited to produce competitive EGs for LIBs that power electric vehicles (EVs) and portable electronic devices. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:187 / 201
页数:15
相关论文
共 50 条
  • [21] Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries
    Zhong C.
    Weng S.
    Wang Z.
    Zhan C.
    Wang X.
    Nano Energy, 2023, 117
  • [22] Suppressing Deformation of Silicon Anodes via Interfacial Synthesis for Fast-Charging Lithium-Ion Batteries
    Lee, Taeyong
    Kim, Namhyung
    Lee, Jiyun
    Lee, Yoonkwang
    Sung, Jaekyung
    Kim, Hyeongjun
    Chae, Sujong
    Cha, Hyungyeon
    Son, Yeonguk
    Kwak, Sang Kyu
    Cho, Jaephil
    ADVANCED ENERGY MATERIALS, 2023, 13 (41)
  • [23] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yang, Yi
    Zhong, Xia-Lin
    Xu, Lei
    Yang, Zhuo-Lin
    Yan, Chong
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 453 - 459
  • [24] Fast-Charging Strategies for Lithium-Ion Batteries: Advances and Perspectives
    Zhao, Jingteng
    Song, Congying
    Li, Guoxing
    CHEMPLUSCHEM, 2022, 87 (07):
  • [25] Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries
    Wang, Mengmeng
    Wang, Junru
    Xiao, Jingchao
    Ren, Naiqing
    Pan, Bicai
    Chen, Chu-sheng
    Chen, Chun-hua
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) : 16279 - 16288
  • [26] Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Xu, Yuxi
    Lin, Zhaoyang
    Zhong, Xing
    Papandrea, Ben
    Huang, Yu
    Duan, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5345 - 5350
  • [27] Fast-Charging of Hybrid Lithium-Ion/Lithium-Metal Anodes by Nanostructured Hard Carbon Host
    Gong, Huaxin
    Chen, Yuelang
    Chen, Shucheng
    Xu, Chengyi
    Yang, Yufei
    Ye, Yusheng
    Huang, Zhuojun
    Ning, Rui
    Cui, Yi
    Bao, Zhenan
    ACS ENERGY LETTERS, 2022, 7 (12) : 4417 - 4426
  • [28] Structural Regulation and Design of Electrode Materials and Electrolytes for Fast-Charging Lithium-Ion Batteries
    Yu, Disheng
    Liu, Changlin
    Lin, Xue
    Sheng, Lizhi
    Jiang, Lili
    PROGRESS IN CHEMISTRY, 2024, 36 (01) : 132 - 144
  • [29] An Ion-Pumping Interphase on Graphdiyne/Graphite Heterojunction for Fast-Charging Lithium-Ion Batteries
    An, Juan
    Wang, Fan
    Yang, Jia-Yue
    Li, Guoxing
    Li, Yuliang
    CCS CHEMISTRY, 2024, 6 (01): : 110 - 124
  • [30] A Comprehensive Experimental Study on Microstructure-Graded Graphite Anodes for Enhancing Fast-Charging Capability of Lithium-Ion Batteries
    Ahmadi, Soma
    Maddipatla, Dinesh
    Bazuin, Bradley J.
    Atashbar, Massood Z.
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (08):