共 50 条
Phase-field modeling of interfacial debonding in multi-phase materials via an adaptive isogeometric-meshfree approach
被引:22
作者:
Li, Weidong
[1
]
Nguyen-Thanh, Nhon
[1
]
Zhou, Kun
[1
]
机构:
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
基金:
新加坡国家研究基金会;
关键词:
Phase-field modeling;
Interfacial debonding;
Multi-phase materials;
Isogeometric-meshfree approach;
Adaptive refinement;
PROGRESSIVE FAILURE;
BRITTLE-FRACTURE;
PROPAGATION;
FORMULATION;
D O I:
10.1016/j.engfracmech.2022.108481
中图分类号:
O3 [力学];
学科分类号:
08 ;
0801 ;
摘要:
The phase-field modeling of fracture in multi-phase materials is conducted via an adaptive isogeometric-meshfree approach. In this modeling, the crack and interface phase fields are introduced for the regularized representations of crack surfaces and interfaces, respectively, and a convenient approach is proposed for implementing the regularized energy related to both crack surfaces and interfaces without requiring the line integration along them. Numerical implementations of the present modeling are performed via the isogeometric-meshfree approach that constructs the equivalence between isogeometric and meshfree approximations. The developed approach can conveniently achieve mesh refinement around interfaces or cracks, and dynamically track cracks without requiring crack propagation criteria. Moreover, behaviors including the crack initiation, propagation, coalescence, interfacial debonding and matrix cracking of multiphase materials can be efficiently captured. Finally, simulations are conducted for analyzing two-and three-dimensional fracture of multi-phase materials to demonstrate the reliability of the developed approach.
引用
收藏
页数:20
相关论文