On the Existence of Resolvable (K 3 + e)-Group Divisible Designs

被引:3
|
作者
Wang, Lidong [1 ]
机构
[1] Chinese Peoples Armed Police Force Acad, Dept Basic Courses, Langfang 065000, Hebei, Peoples R China
关键词
(K-3 + e)-group divisible design; Resolvable; (K-3 + e)-frame; DESIGNS;
D O I
10.1007/s00373-010-0954-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that the necessary conditions for the existence of resolvable (K (3) + e)-group divisible designs with group-type g (u) are also sufficient.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 40 条
  • [21] Group divisible (K4-e)-packings with any minimum leave
    Gao, Yufeng
    Chang, Yanxun
    Feng, Tao
    JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (07) : 315 - 343
  • [22] Some new resolvable GDDs with k=4 and doubly resolvable GDDs with k=3
    Du, Juan
    Abel, R. Julian R.
    Wang, Jinhua
    DISCRETE MATHEMATICS, 2015, 338 (11) : 2105 - 2118
  • [23] Minimum Resolvable Coverings of Kv with Copies of K4 − e
    Renwang Su
    Lidong Wang
    Graphs and Combinatorics, 2011, 27 : 883 - 896
  • [24] New construction of partial geometries based on group divisible designs and their associated LDPC codes
    Xu, Hengzhou
    Yu, Zhongyang
    Feng, Dan
    Zhu, Hai
    PHYSICAL COMMUNICATION, 2020, 39
  • [25] The existence of Kirkman squares -: Doubly resolvable (v,3,1)-BIBDs
    Colbourn, CJ
    Lamken, ER
    Ling, ACH
    Mills, WH
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 26 (1-3) : 169 - 196
  • [26] The Existence of Kirkman Squares—Doubly Resolvable (v,3,1)-BIBDs
    Charles J. Colbourn
    E. R. Lamken
    Alan C. H. Ling
    W. H. Mills
    Designs, Codes and Cryptography, 2002, 26 : 169 - 196
  • [27] Uniformly resolvable decompositions of Kv into P3 and K3 graphs
    Milici, Salvatore
    Tuza, Zsolt
    DISCRETE MATHEMATICS, 2014, 331 : 137 - 141
  • [28] Uniformly resolvable decompositions of Kv into K2 and K1,3 graphs
    Chen, Fen
    Cao, Haitao
    DISCRETE MATHEMATICS, 2016, 339 (08) : 2056 - 2062
  • [29] New 3-designs and 2-designs having U(3,3) as an automorphism group
    Crnkovic, Dean
    Crnkovic, Vedrana Mikulic
    Svob, Andrea
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2507 - 2515
  • [30] 2-(v, k, 1) Designs with a point-primitive rank 3 automorphism group of affine type
    Biliotti, Mauro
    Montinaro, Alessandro
    Francot, Eliana
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 76 (02) : 135 - 171