Superballistic and superdiffusive scaling limits of stochastic harmonic chains with long-range interactions

被引:2
作者
Suda, Hayate [1 ]
机构
[1] Keio Univ, Fac Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
关键词
stochastic harmonic chain; long-range interaction; superballistic wave equation; superdiffusion; fractional diffusion equation; FRACTIONAL DYNAMICS; HAMILTONIAN SYSTEM; OSCILLATORS; HYDRODYNAMICS; LATTICE;
D O I
10.1088/1361-6544/ac52e4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider one-dimensional infinite chains of harmonic oscillators with random exchanges of momenta and long-range interaction potentials which have polynomial decay rate vertical bar x vertical bar(-theta) , x -> infinity, theta > 1 where x is an element of Z is the interaction range. The dynamics conserve total momentum, total length and total energy. We prove that the systems evolve macroscopically on superballistic space-time scale (y epsilon(-1),t epsilon(-theta-1/2)) when 1 < theta < 3, (y epsilon(-1),t epsilon(-1)root log(epsilon(-1))(-1)) when theta = 3, and hyperbolic space-time scale (y epsilon(-1), t epsilon(-1)) when theta > 3. Combining our results and the results in (Suda 2021 Ann. Inst. Henri Poincare B 57 2268-2314), we show the existence of two different space-time scales on which the systems evolve. In addition, we prove the fluctuations of the normal modes of the superballistic wave equation, which are analogues of the Riemann invariants and capture fluctuations along the characteristics. For the normal modes, the space-time scale is superdiffusive when 2 < theta <= 4 and diffusive when theta > 4.
引用
收藏
页码:2288 / 2333
页数:46
相关论文
共 23 条
[1]   Length dependence of heat conduction in (an)harmonic chains with asymmetries or long range interparticle interactions [J].
Avila, Ricardo R. ;
Pereira, Emmanuel ;
Teixeira, Daniel L. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 423 :51-60
[2]   Energy transport in the presence of long-range interactions [J].
Bagchi, Debarshee .
PHYSICAL REVIEW E, 2017, 96 (04)
[3]   Thermal transport in the Fermi-Pasta-Ulam model with long-range interactions [J].
Bagchi, Debarshee .
PHYSICAL REVIEW E, 2017, 95 (03)
[4]   Energy Transport in Stochastically Perturbed Lattice Dynamics [J].
Basile, Giada ;
Olla, Stefano ;
Spohn, Herbert .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :171-203
[5]   Thermal Conductivity for a Momentum Conservative Model [J].
Basile, Giada ;
Bernardin, Cedric ;
Olla, Stefano .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) :67-98
[6]   3/4-Fractional Superdiffusion in a System of Harmonic Oscillators Perturbed by a Conservative Noise [J].
Bernardin, Cedric ;
Goncalves, Patricia ;
Jara, Milton .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) :505-542
[7]   Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions [J].
Bernardin, Cedric ;
Goncalves, Patricia .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (01) :291-332
[8]   Anomalous diffusion for a class of systems with two conserved quantities [J].
Bernardin, Cedric ;
Stoltz, Gabriel .
NONLINEARITY, 2012, 25 (04) :1099-1133
[9]   Fermi-Pasta-Ulam chains with harmonic and anharmonic long-range interactions [J].
Chendjou, Gervais Nazaire Beukam ;
Nguenang, Jean Pierre ;
Trombettoni, Andrea ;
Dauxois, Thierry ;
Khomeriki, Ramaz ;
Ruffo, Stefano .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 60 :115-127
[10]   ONE-DIMENSIONAL HARMONIC LATTICE CARICATURE OF HYDRODYNAMICS [J].
DOBRUSHIN, RL ;
PELLEGRINOTTI, A ;
SUHOV, YM ;
TRIOLO, L .
JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (3-4) :571-607