DOUBLY ROBUST AND LOCALLY EFFICIENT ESTIMATION WITH MISSING OUTCOMES

被引:2
|
作者
Han, Peisong [1 ]
Wang, Lu [2 ]
Song, Peter X. -K. [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Augmented inverse probability weighting (AIPW); auxiliary variables; conditional empirical likelihood; mean regression; missing at random (MAR); surrogate outcome; SEMIPARAMETRIC REGRESSION-MODELS; LIKELIHOOD-BASED INFERENCE; EMPIRICAL-LIKELIHOOD;
D O I
10.5705/ss.2014.030
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider parametric regression where the outcome is subject to missingness. To achieve the semiparametric efficiency bound, most existing estimation methods require the correct modeling of certain second moments of the data, which can be very challenging in practice. We propose an estimation procedure based on the conditional empirical likelihood (CEL) method. Our method does not require us to model any second moments. We study the CEL-based inverse probability weighted (CEL-IPW) and augmented inverse probability weighted (CEL-AIPW) estimators in detail. Under some regularity conditions and the missing at random (MAR) mechanism, the CEL-IPW estimator is consistent if the missingness mechanism is correctly modeled, and the CEL-AIPW estimator is consistent if either the missingness mechanism or the conditional mean of the outcome is correctly modeled. When both quantities are correctly modeled, the CEL-AIPW estimator attains the semiparametric efficiency bound without modeling any second moments. The asymptotic distributions are derived. Numerical implementation through nested optimization routines using the Newton-Raphson algorithm is discussed.
引用
收藏
页码:691 / 719
页数:29
相关论文
共 50 条
  • [31] Robust and efficient estimation for the treatment effect in causal inference and missing data problems
    Lin, Huazhen
    Zhou, Fanyin
    Wang, Qiuxia
    Zhou, Ling
    Qin, Jing
    JOURNAL OF ECONOMETRICS, 2018, 205 (02) : 363 - 380
  • [32] Doubly robust estimation in missing data and causal inference models (vol 61, pg 962, 2005)
    Bang, Heejung
    Robins, James M.
    BIOMETRICS, 2008, 64 (02) : 650 - 650
  • [33] Efficient, doubly robust estimation of the effect of dose switching for switchers in a randomized clinical trial
    Van Lancker, Kelly
    Vandebosch, An
    Vansteelandt, Stijn
    BIOMETRICAL JOURNAL, 2021, 63 (07) : 1464 - 1475
  • [34] Doubly robust estimation of optimal dynamic treatment regimes with multicategory treatments and survival outcomes
    Zhang, Zhang
    Yi, Danhui
    Fan, Yiwei
    STATISTICS IN MEDICINE, 2022, 41 (24) : 4903 - 4923
  • [35] Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates
    Chen, Baojiang
    Zhou, Xiao-Hua
    BIOMETRICS, 2011, 67 (03) : 830 - 842
  • [36] Robust location estimation with missing data
    Sued, Mariela
    Yohai, Victor J.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (01): : 111 - 132
  • [37] Robust nonparametric estimation with missing data
    Boente, Graciela
    Gonzalez-Manteiga, Wenceslao
    Perez-Gonzalez, Ana
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 571 - 592
  • [38] A comparative study of doubly robust estimators of the mean with missing data
    Zhang, Guangyu
    Little, Roderick
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (12) : 2039 - 2058
  • [39] Doubly Robust Joint Learning for Recommendation on Data Missing Not at Random
    Wang, Xiaojie
    Zhang, Rui
    Sun, Yu
    Qi, Jianzhong
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [40] DOUBLY ROBUST NONPARAMETRIC MULTIPLE IMPUTATION FOR IGNORABLE MISSING DATA
    Long, Qi
    Hsu, Chiu-Hsieh
    Li, Yisheng
    STATISTICA SINICA, 2012, 22 (01) : 149 - 172