DOUBLY ROBUST AND LOCALLY EFFICIENT ESTIMATION WITH MISSING OUTCOMES

被引:3
作者
Han, Peisong [1 ]
Wang, Lu [2 ]
Song, Peter X. -K. [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Augmented inverse probability weighting (AIPW); auxiliary variables; conditional empirical likelihood; mean regression; missing at random (MAR); surrogate outcome; SEMIPARAMETRIC REGRESSION-MODELS; LIKELIHOOD-BASED INFERENCE; EMPIRICAL-LIKELIHOOD;
D O I
10.5705/ss.2014.030
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider parametric regression where the outcome is subject to missingness. To achieve the semiparametric efficiency bound, most existing estimation methods require the correct modeling of certain second moments of the data, which can be very challenging in practice. We propose an estimation procedure based on the conditional empirical likelihood (CEL) method. Our method does not require us to model any second moments. We study the CEL-based inverse probability weighted (CEL-IPW) and augmented inverse probability weighted (CEL-AIPW) estimators in detail. Under some regularity conditions and the missing at random (MAR) mechanism, the CEL-IPW estimator is consistent if the missingness mechanism is correctly modeled, and the CEL-AIPW estimator is consistent if either the missingness mechanism or the conditional mean of the outcome is correctly modeled. When both quantities are correctly modeled, the CEL-AIPW estimator attains the semiparametric efficiency bound without modeling any second moments. The asymptotic distributions are derived. Numerical implementation through nested optimization routines using the Newton-Raphson algorithm is discussed.
引用
收藏
页码:691 / 719
页数:29
相关论文
共 54 条
[41]   Efficient information theoretic inference for conditional moment restrictions [J].
Smith, Richard J. .
JOURNAL OF ECONOMETRICS, 2007, 138 (02) :430-460
[42]   Efficient restricted estimators for conditional mean models with missing data [J].
Tan, Z. .
BIOMETRIKA, 2011, 98 (03) :663-684
[43]  
Tan Z., 2008, INT J BIOSTAT, V4, DOI [10.2202/1557-4679.1109., DOI 10.2202/1557-4679.1109]
[44]   A distributional approach for causal inference using propensity scores [J].
Tan, Zhiqiang .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) :1619-1637
[45]   Bounded, efficient and doubly robust estimation with inverse weighting [J].
Tan, Zhiqiang .
BIOMETRIKA, 2010, 97 (03) :661-682
[46]  
Tsiatis A. A., 2006, Semiparametric Theory and Missing Data
[47]   Improved Doubly Robust Estimation When Data Are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout [J].
Tsiatis, Anastasios A. ;
Davidian, Marie ;
Cao, Weihua .
BIOMETRICS, 2011, 67 (02) :536-545
[48]   EMPIRICAL LIKELIHOOD FOR ESTIMATING EQUATIONS WITH MISSING VALUES [J].
Wang, Dong ;
Chen, Song Xi .
ANNALS OF STATISTICS, 2009, 37 (01) :490-517
[49]   Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations [J].
Wang, Lu ;
Rotnitzky, Andrea ;
Lin, Xihong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) :1135-1146
[50]   QUASI-LIKELIHOOD FUNCTIONS, GENERALIZED LINEAR-MODELS, AND GAUSS-NEWTON METHOD [J].
WEDDERBURN, RWM .
BIOMETRIKA, 1974, 61 (03) :439-447