Enhanced photocurrent in thin-film GaAs solar cells with embedded Al nanoparticles

被引:19
作者
Singh, Gurjit [1 ,2 ]
Sekhon, Jagmeet Singh [2 ]
Verma, S. S. [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Phys, Longowal 148106, India
[2] Govind Natl Coll Narangwal, Dept Phys, Ludhiana, Punjab, India
关键词
Antireflection layer; FDTD; photocurrent; plasmonics; spectral absorption rate; thin-film solar cells; AG NANOPARTICLES; EFFICIENCY; PLASMONICS; METAL;
D O I
10.1080/15567036.2019.1587082
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It is believed that the effectual scattering by earth-abundant Al nanoparticles in combination with photoelectric conversion-efficient GaAs material may help for cost-effective solar cells. Al nanoparticles of various radii embedded at different depths in a Ta2O5-coated GaAs semiconductor have been studied by finite-difference time-domain method for their influence towards spectral absorption rate and photocurrent in GaAs solar cells. The calculated spectral absorption rate and photocurrent show a significant enhancement at the optimal depth for a particular radius of Al nanoparticles, which is explained on the basis of surface plasmon resonance. Al nanoparticles of radius 80 nm embedded just below the antireflection layer of Ta2O5 result a maximum spectral absorption rate of 0.95 that leads to a photocurrent of 30.43 mA/cm(2).
引用
收藏
页码:815 / 823
页数:9
相关论文
共 23 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[2]   Role of metal and dielectric nanoparticles in the performance enhancement of silicon solar cells [J].
Das, Sonali ;
Kundu, Avra ;
Saha, Hiranmay ;
Datta, Swapan K. .
JOURNAL OF MODERN OPTICS, 2012, 59 (14) :1219-1231
[3]  
Edwards D.F., 1985, Handbook of optical constants of solids
[4]  
Green M.A., 2003, 3 GENERATION PHOTOVO
[5]   Harnessing plasmonics for solar cells [J].
Green, Martin A. ;
Pillai, Supriya .
NATURE PHOTONICS, 2012, 6 (03) :130-132
[6]   Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review [J].
Hedayati, Mehdi Keshavarz ;
Elbahri, Mady .
MATERIALS, 2016, 9 (06)
[7]   Single-Layer Antireflection Coatings for GaAs Solar Cells [J].
Hovhannisyan, A. S. .
JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (03) :136-138
[8]   Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes [J].
Hylton, N. P. ;
Li, X. F. ;
Giannini, V. ;
Lee, K. -H. ;
Ekins-Daukes, N. J. ;
Loo, J. ;
Vercruysse, D. ;
Van Dorpe, P. ;
Sodabanlu, H. ;
Sugiyama, M. ;
Maier, S. A. .
SCIENTIFIC REPORTS, 2013, 3
[9]   Embedding Plasmonic Nanostructure Diodes Enhances Hot Electron Emission [J].
Knight, Mark W. ;
Wang, Yumin ;
Urban, Alexander S. ;
Sobhani, Ali ;
Zheng, Bob Y. ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2013, 13 (04) :1687-1692
[10]   Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector [J].
Li X.-N. ;
Yuan Z.-H. ;
Zhou L. .
Optoelectronics Letters, 2014, 10 (01) :38-42