Length of vorticity nodal sets for solutions of the 2D Navier-Stokes equations

被引:9
|
作者
Kukavica, I [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
D O I
10.1081/PDE-120020496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an upper bound on the size of the nodal set {x is an element of Omega : omega(x, t) = 0} of the vorticity omega for solutions of the 2D periodic Navier-Stokes equation. The upper bound depends polynomially on the initial condition, viscosity, the size of 2, and 1/t. The result is based on a new bound on the order of vanishing for solutions of partial derivativeu/partial derivativet - Deltau = w (.) delu + vu.
引用
收藏
页码:771 / 793
页数:23
相关论文
共 50 条
  • [41] Non-uniqueness of weak solutions to 2D hypoviscous Navier-Stokes equations
    Luo, Tianwen
    Qu, Peng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 2896 - 2919
  • [42] NON-UNIQUENESS OF WEAK SOLUTIONS TO 2D GENERALIZED NAVIER-STOKES EQUATIONS
    Li, Xinliang
    Tan, Zhong
    arXiv,
  • [43] Global Solutions to 2D Compressible Isothermal Navier-Stokes Equations on Thin Domains
    Li, Sai
    Sun, Yongzhong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (01)
  • [44] Vorticity boundary conditions for Navier-Stokes equations
    Souli, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 134 (3-4) : 311 - 323
  • [45] Global observer design for Navier-Stokes equations in 2D
    Zayats, Mykhaylo
    Fridman, Emilia
    Zhuk, Sergiy
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1862 - 1867
  • [46] Dirichlet quotients and 2D periodic Navier-Stokes equations
    Constantin, P
    Foias, C
    Kukavica, I
    Majda, AJ
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (02): : 125 - 153
  • [47] On the steady Navier-Stokes equations in 2D exterior domains
    Korobkov, Mikhail, V
    Pileckas, Konstantin
    Russo, Remigio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (03) : 1796 - 1828
  • [48] Inviscid limit for 2D stochastic Navier-Stokes equations
    Cipriano, Fernanda
    Torrecilla, Ivan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (06) : 2405 - 2426
  • [49] Averaging Principles for Stochastic 2D Navier-Stokes Equations
    Gao, Peng
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (02)
  • [50] ON THE NUMBER OF DETERMINING NODES FOR THE 2D NAVIER-STOKES EQUATIONS
    JONES, DA
    TITI, ES
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (01) : 72 - 88