Solution of a Bi-level Programming Problem with Inexact Parameters

被引:0
|
作者
Jana, Mrinal [1 ]
Panda, Geetanjali [2 ]
机构
[1] Univ Petr & Energy Studies, Dehra Dun 248007, Uttarakhand, India
[2] Indian Inst Technol Kharagpur, Kharagpur 721302, W Bengal, India
来源
RECENT ADVANCES IN INTELLIGENT INFORMATION SYSTEMS AND APPLIED MATHEMATICS | 2020年 / 863卷
关键词
Nonlinear optimization; Uncertain optimization; Interval valued function; Interval inequality; Order relation; BILEVEL; OPTIMIZATION;
D O I
10.1007/978-3-030-34152-7_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a bi-level programming, coefficients in the objective functions and the constraints may not to be fixed real numbers due to the presence of uncertainties in the domain of the model. This paper develops a methodology to solve these type bi-level programming problems whose parameters in the upper and lower level objective functions and constraints vary in intervals. A methodology is derived to find a compromising solution. The methodology is illustrated through numerical example.
引用
收藏
页码:579 / 597
页数:19
相关论文
共 50 条
  • [1] A bi-level programming model for the optimal lane reservation problem
    Cheng, Qixiu
    Chen, Yinghao
    Liu, Zhiyuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 189
  • [2] A bi-level programming approach for production-distribution supply chain problem
    Amirtaheri, Omid.
    Zandieh, Mostafa
    Dorri, Behrouz
    Motameni, A. R.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2017, 110 : 527 - 537
  • [3] An Optimal Equilibrium Solution Approach for Bi-level Nonlinear Programming Problem Using Lingo Software
    Wang, Qian
    Zheng, Mingfa
    Li, Bingjie
    MODERN INDUSTRIAL IOT, BIG DATA AND SUPPLY CHAIN, IIOTBDSC 2020, 2021, 218 : 83 - 88
  • [4] Bi-Level linear programming of intuitionistic fuzzy
    Alessa, Nazek A.
    SOFT COMPUTING, 2021, 25 (13) : 8635 - 8641
  • [5] Solving bi-level programming problem with fuzzy random variable coefficients
    Singh, Vishnu Pratap
    Chakraborty, Debjani
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (01) : 521 - 528
  • [6] A Fuzzy Algorithm for Solving a Class of Bi-Level Linear Programming Problem
    Zhang, Lu
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1823 - 1828
  • [7] A bi-level programming framework for identifying optimal parameters in portfolio selection
    Jing, Kui
    Xu, Fengmin
    Li, Xuepeng
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (01) : 87 - 112
  • [8] Optimality conditions and duality results for a robust bi-level programming problem
    Saini, Shivani
    Kailey, Navdeep
    Ahmad, Izhar
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (02) : 525 - 539
  • [9] SOLUTION ALGORITHM FOR A NEW BI-LEVEL DISCRETE NETWORK DESIGN PROBLEM
    Chen, Qun
    Chen, Haibo
    PROMET-TRAFFIC & TRANSPORTATION, 2013, 25 (06): : 513 - 524
  • [10] A global optimization algorithm for solving the bi-level linear fractional programming problem
    Wang, Guangmin
    Gao Ziyou
    Wan Zhongping
    COMPUTERS & INDUSTRIAL ENGINEERING, 2012, 63 (02) : 428 - 432