A two-stage deep learning model based on feature combination effects

被引:4
|
作者
Teng, Xuyang [1 ]
Zhang, Yunxiao [1 ]
He, Meilin [1 ]
Han, Meng [2 ]
Liu, Erxiao [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ, Data Intelligence Res Ctr, Binjiang Inst, Hangzhou 310053, Zhejiang, Peoples R China
关键词
Deep learning; Feature selection; Correlation information entropy; Combination effect; STACKED DENOISING AUTOENCODERS; FEATURE-SELECTION; MUTUAL INFORMATION; NETWORK; ALGORITHM; CLASSIFICATION; RELEVANCE;
D O I
10.1016/j.neucom.2022.09.082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning currently provides the best solutions in various industries involving tremendous data, such as object recognition and intrusion detection. In deep learning models, the quality and volume of data are two of the factors that determine task performance. This study concentrates on utilizing high-quality data to simultaneously improve the efficiency and accuracy of deep networks. This paper proposes a two-stage learning model that aims to generate high-quality data with reduced features during the first stage. Then, the selected data subset is regarded as the input in the second stage, i.e., the deep learning stage. However, most existing feature selection methods neglect the combination effect induced by inte-grated feature subsets. A correlation information entropy-based approach is developed to evaluate the integrated non-linear subspace. Experiments are carried out on six well-known classification datasets. The results indicate that our proposed two-stage learning model performs better than the compared high-dimensional deep learning models in speeding up the learning process and improving classification accuracy. Moreover, our developed feature selection method outperforms state-of-the-art feature selec-tion techniques in terms of time consumption and classification accuracy when combined with three deep learning models.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 322
页数:16
相关论文
共 50 条
  • [31] A two-stage deep learning-based system for patent citation recommendation
    Jaewoong Choi
    Jiho Lee
    Janghyeok Yoon
    Sion Jang
    Jaeyoung Kim
    Sungchul Choi
    Scientometrics, 2022, 127 : 6615 - 6636
  • [32] Two-stage selection of distributed data centers based on deep reinforcement learning
    Qirui Li
    Zhiping Peng
    Delong Cui
    Jianpeng Lin
    Jieguang He
    Cluster Computing, 2022, 25 : 2699 - 2714
  • [33] A two-stage deep-learning-based balancing method for rotating machinery
    Zhong, Shun
    Han, Hong-Xiang
    Hou, Lei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (04)
  • [34] A Two-stage Sheep Acial Pain Recognition Method Based on Deep Learning
    LI Huan
    HE Lile
    HE Ning
    ZHANG Chenrui
    Instrumentation, 2023, 10 (03) : 42 - 52
  • [35] Two-Stage Denoising of Ground Penetrating Radar Data Based on Deep Learning
    Hu, Mingqi
    Liu, Xianghao
    Lu, Qi
    Liu, Sixin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [36] Two-stage selection of distributed data centers based on deep reinforcement learning
    Li, Qirui
    Peng, Zhiping
    Cui, Delong
    Lin, Jianpeng
    He, Jieguang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (04): : 2699 - 2714
  • [37] A novel two-stage method of plant seedlings classification based on deep learning
    Dai, Tianhong
    Cong, Shijie
    Huang, Jianping
    Zhang, Yanwen
    Huang, Xinwang
    Xie, Qiancheng
    Sun, Chunxue
    Li, Kexin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 2181 - 2191
  • [38] Two-Stage Detection Algorithm for Kiwifruit Leaf Diseases Based on Deep Learning
    Yao, Jia
    Wang, Yubo
    Xiang, Ying
    Yang, Jia
    Zhu, Yuhang
    Li, Xin
    Li, Shuangshuang
    Zhang, Jie
    Gong, Guoshu
    PLANTS-BASEL, 2022, 11 (06):
  • [39] A two-stage deep learning-based system for patent citation recommendation
    Choi, Jaewoong
    Lee, Jiho
    Yoon, Janghyeok
    Jang, Sion
    Kim, Jaeyoung
    Choi, Sungchul
    SCIENTOMETRICS, 2022, 127 (11) : 6615 - 6636
  • [40] Two-stage selection of distributed data centers based on deep reinforcement learning
    Li, Qirui
    Peng, Zhiping
    Cui, Delong
    Lin, Jianpeng
    He, Jieguang
    Cluster Computing, 2022, 25 (04) : 2699 - 2714