A two-stage deep learning model based on feature combination effects

被引:4
|
作者
Teng, Xuyang [1 ]
Zhang, Yunxiao [1 ]
He, Meilin [1 ]
Han, Meng [2 ]
Liu, Erxiao [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ, Data Intelligence Res Ctr, Binjiang Inst, Hangzhou 310053, Zhejiang, Peoples R China
关键词
Deep learning; Feature selection; Correlation information entropy; Combination effect; STACKED DENOISING AUTOENCODERS; FEATURE-SELECTION; MUTUAL INFORMATION; NETWORK; ALGORITHM; CLASSIFICATION; RELEVANCE;
D O I
10.1016/j.neucom.2022.09.082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning currently provides the best solutions in various industries involving tremendous data, such as object recognition and intrusion detection. In deep learning models, the quality and volume of data are two of the factors that determine task performance. This study concentrates on utilizing high-quality data to simultaneously improve the efficiency and accuracy of deep networks. This paper proposes a two-stage learning model that aims to generate high-quality data with reduced features during the first stage. Then, the selected data subset is regarded as the input in the second stage, i.e., the deep learning stage. However, most existing feature selection methods neglect the combination effect induced by inte-grated feature subsets. A correlation information entropy-based approach is developed to evaluate the integrated non-linear subspace. Experiments are carried out on six well-known classification datasets. The results indicate that our proposed two-stage learning model performs better than the compared high-dimensional deep learning models in speeding up the learning process and improving classification accuracy. Moreover, our developed feature selection method outperforms state-of-the-art feature selec-tion techniques in terms of time consumption and classification accuracy when combined with three deep learning models.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 322
页数:16
相关论文
共 50 条
  • [21] Two-Stage Classification Method for MSI Status Prediction Based on Deep Learning Approach
    Lee, Hyunseok
    Seo, Jihyun
    Lee, Giwan
    Park, Jongoh
    Yeo, Doyeob
    Hong, Ayoung
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 11
  • [22] DTDeMo: A Deep Learning-Based Two-Stage Image Demosaicing Model With Interpolation and Enhancement
    Hou, Jingchao
    Gendy, Garas
    Chen, Guo
    Wang, Liangchao
    He, Guanghui
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 1026 - 1039
  • [23] A Hybrid Two-Stage Teaching-Learning-Based Optimization Algorithm for Feature Selection in Bioinformatics
    Kang, Yan
    Wang, Haining
    Pu, Bin
    Tao, Liu
    Chen, Jianguo
    Yu, Philip S.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 1746 - 1760
  • [24] A two-stage seismic data denoising network based on deep learning
    Zhang, Yan
    Zhang, Chi
    Song, Liwei
    STUDIA GEOPHYSICA ET GEODAETICA, 2024, 68 (3-4) : 156 - 175
  • [25] A Two-stage Raman Imaging Denoising Algorithm Based on Deep Learning
    Tang, Quan
    Hu, Jiaqi
    Chen, Jinna
    Xue, Chenlong
    Chen, Junfan
    Dang, Hong
    Lu, Dan
    Liu, Huanhuan
    Sun, Qizhen
    Xiong, Qiaozhou
    Cong, Longqing
    Shum, Perry Ping
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 2096 - 2099
  • [26] Two-stage visible watermark removal architecture based on deep learning
    Jiang, Pei
    He, Shiwen
    Yu, Hufei
    Zhang, Yaoxue
    IET IMAGE PROCESSING, 2020, 14 (15) : 3819 - 3828
  • [27] A framework of multiple kernel ensemble learning for classification using two-stage feature selection method
    Qi, Chengming
    Hu, Lishuan
    Yu, Xin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (05) : 2737 - 2747
  • [28] Model forecasting based on two-stage feature selection procedure using orthogonal greedy algorithm
    Jiang, He
    APPLIED SOFT COMPUTING, 2018, 63 : 110 - 123
  • [29] Two-stage deep learning model for automate detection and classification of lung diseases
    Ganeshkumar, M.
    Ravi, Vinayakumar
    Sowmya, V.
    Gopalakrishnan, E. A.
    Soman, K. P.
    Rupeshkumar, M.
    SOFT COMPUTING, 2023, 27 (21) : 15563 - 15579
  • [30] Two-stage deep learning model for automate detection and classification of lung diseases
    M. Ganeshkumar
    Vinayakumar Ravi
    V. Sowmya
    E. A. Gopalakrishnan
    K. P. Soman
    M. Rupeshkumar
    Soft Computing, 2023, 27 : 15563 - 15579