Calibration and Unwrapping of the Normalized Scattering Cross Section for the Cyclone Global Navigation Satellite System

被引:157
作者
Gleason, Scott [1 ]
Ruf, Christopher S. [2 ]
Clarizia, Maria Paola [2 ]
O'Brien, Andrew J. [3 ]
机构
[1] SW Res Inst, Boulder, CO 80302 USA
[2] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[3] Ohio State Univ, Elect & Comp Engn, Columbus, OH 43212 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 05期
基金
英国自然环境研究理事会;
关键词
Bistatic radar; calibration; cyclone global navigation satellite system (CYGNSS); global navigation satellite system (GNSS); global positioning system (GPS); reflectometry; scatterometry; GPS SIGNALS; OCEAN; REFLECTOMETRY;
D O I
10.1109/TGRS.2015.2502245
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper develops and characterizes the algorithms used to generate the Level 1 (L1) science data products of the Cyclone Global Navigation Satellite System (CYGNSS) mission. The L1 calibration consists of two parts: the Level 1a (L1a) calibration converts the raw Level 0 delay-Doppler maps (DDMs) of processed counts into received power in units of watts. The L1a DDMs are then converted to Level 1b DDMs of bistatic radar cross section values by unwrapping the forward scattering model and generating two additional DDMs: one of unnormalized bistatic radar cross section values (in units of square meters) and a second of bin-by-bin effective scattering areas. The L1 data products are generated in such a way as to allow for flexible processing of variable areas of the DDM (which correspond to different regions on the surface). The application of the L1 data products to the generation of input observables for the CYGNSS Level 2 (L2) wind retrievals is also presented. This includes a demonstration of using only near-specular DDM bins to calculate a normalized bistatic radar cross section (unitless, i.e., m(2)/m(2)) over a subset of DDM pixels, or DDM area. Additionally, an extensive term-by-term error analysis has been performed using this example extent of the DDM to help quantify the sensitivity of the L1 calibration as a function of key internal instrument and external parameters in the near-specular region.
引用
收藏
页码:2495 / 2509
页数:15
相关论文
共 30 条
  • [1] Armatys M., 2001, THESIS U COLORADO BO
  • [2] BarSever YE, 1996, J GEODESY, V70, P714, DOI 10.1007/BF00867149
  • [3] Mediterranean Balloon Experiment: ocean wind speed sensing from the stratosphere, using GPS reflections
    Cardellach, E
    Ruffini, G
    Pino, D
    Rius, A
    Komjathy, A
    Garrison, JL
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 88 (03) : 351 - 362
  • [4] Clarizia M. P., IEEE T GEOS IN PRESS
  • [5] Czopek F.M., 1993, P 6 INT TECHNICAL M, P37, DOI [10.1002/navi.123, DOI 10.1002/NAVI.123]
  • [6] An Efficient Algorithm to the Simulation of Delay-Doppler Maps of Reflected Global Navigation Satellite System Signals
    Fernando Marchan-Hernandez, Juan
    Camps, Adriano
    Rodriguez-Alvarez, Nereida
    Valencia, Enric
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08): : 2733 - 2740
  • [7] Effect of sea roughness on bistatically scattered range coded signals from the Global Positioning System
    Garrison, JL
    Katzberg, SJ
    Hill, MI
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (13) : 2257 - 2260
  • [8] Germain O., 2003, GEOPHYS RES LETT, V31, P1
  • [9] Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing
    Gleason, S
    Hodgart, S
    Sun, YP
    Gommenginger, C
    Mackin, S
    Adjrad, M
    Unwin, M
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06): : 1229 - 1241
  • [10] Gleason S., 2006, REMOTE SENSING OCEAN