Variational formulation of marine ice-sheet and subglacial-lake grounding-line dynamics

被引:8
|
作者
Stubblefield, Aaron G. [1 ]
Spiegelman, Marc [1 ,2 ]
Creyts, Timothy T. [1 ]
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
基金
美国国家科学基金会;
关键词
ice sheets; variational methods; computational methods; FULL STOKES MODEL; FREE-SURFACE FLOW; THWAITES GLACIER; TIDAL MODULATION; WEST ANTARCTICA; PINE ISLAND; PART; SHELF; STREAM; INVENTORY;
D O I
10.1017/jfm.2021.394
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Grounding lines exist where land-based glacial ice flows on to a body of water. Accurately modelling grounding-line migration at the ice-ocean interface is essential for estimating future ice-sheet mass change. On the interior of ice sheets, the shores of subglacial lakes are also grounding lines. Grounding-line positions are sensitive to water volume changes such as sea-level rise or subglacial-lake drainage. Here, we introduce numerical methods for simulating grounding-line dynamics in the marine ice sheet and subglacial-lake settings. Variational inequalities arise from contact conditions that relate normal stress, water pressure and velocity at the base. Existence and uniqueness of solutions to these problems are established using a minimisation argument. A penalty method is used to replace the variational inequalities with variational equations that are solved using a finite-element method. We illustrate the grounding-line response to tidal cycles in the marine ice-sheet problem and filling-draining cycles in the subglacial-lake problem. We introduce two computational benchmarks where the known lake volume change is used to measure the accuracy of the numerical method.
引用
收藏
页数:25
相关论文
共 8 条
  • [1] The influence of subglacial lake discharge on Thwaites Glacier ice-shelf melting and grounding-line retreat
    Gourmelen, N.
    Jakob, L.
    Holland, P. R.
    Dutrieux, P.
    Goldberg, D.
    Bevan, S.
    Luckman, A.
    Malczyk, G.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [2] Sensitivity of the future evolution of the Wilkes Subglacial Basin ice sheet to grounding-line melt parameterizations
    Wang, Yu
    Zhao, Chen
    Gladstone, Rupert
    Zwinger, Thomas
    Galton-Fenzi, Benjamin K.
    Christoffersen, Poul
    CRYOSPHERE, 2024, 18 (11): : 5117 - 5137
  • [3] Grounding-line flux conditions for marine ice-sheet systems under effective-pressure-dependent and hybrid friction laws
    Gregov, Thomas
    Pattyn, Frank
    Arnst, Maarten
    JOURNAL OF FLUID MECHANICS, 2023, 975
  • [4] Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison
    Pattyn, Frank
    Perichon, Laura
    Durand, Gael
    Favier, Lionel
    Gagliardini, Olivier
    Hindmarsh, Richard C. A.
    Zwinger, Thomas
    Albrecht, Torsten
    Cornford, Stephen
    Docquier, David
    Furst, Johannes J.
    Goldberg, Daniel
    Gudmundsson, G. Hilmar
    Humbert, Angelika
    Huetten, Moritz
    Huybrechts, Philippe
    Jouvet, Guillaume
    Kleiner, Thomas
    Larour, Eric
    Martin, Daniel
    Morlighem, Mathieu
    Payne, Anthony J.
    Pollard, David
    Rueckamp, Martin
    Rybak, Oleg
    Seroussi, Helene
    Thoma, Malte
    Wilkens, Nina
    JOURNAL OF GLACIOLOGY, 2013, 59 (215) : 410 - 422
  • [5] Quantifying subglacial bed roughness in Antarctica: implications for ice-sheet dynamics and history
    Bingham, Robert G.
    Siegert, Martin J.
    QUATERNARY SCIENCE REVIEWS, 2009, 28 (3-4) : 223 - 236
  • [6] Interaction between ice sheet dynamics and subglacial lake circulation: a coupled modelling approach
    Thoma, M.
    Grosfeld, K.
    Mayer, C.
    Pattyn, F.
    CRYOSPHERE, 2010, 4 (01): : 1 - 12
  • [7] Representing Grounding Line Dynamics in Numerical Ice Sheet Models: Recent Advances and Outlook
    Docquier, David
    Perichon, Laura
    Pattyn, Frank
    SURVEYS IN GEOPHYSICS, 2011, 32 (4-5) : 417 - 435
  • [8] Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model
    Goldberg, D. N.
    Snow, K.
    Holland, P.
    Jordan, J. R.
    Campin, J. -M.
    Heimbach, P.
    Arthern, R.
    Jenkins, A.
    OCEAN MODELLING, 2018, 125 : 45 - 60