Strengthening Theorems of Dirac and Erdos on Disjoint Cycles

被引:2
作者
Kierstead, H. A. [1 ]
Kostochka, A. V. [2 ,3 ]
McConvey, A. [2 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85281 USA
[2] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[3] Sobolev Inst Math, Novosibirsk, Russia
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
disjoint cycles; disjoint triangles; minimum degree; planar graphs; GRAPH;
D O I
10.1002/jgt.22106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 3 be an integer, H-k(G) be the set of vertices of degree at least 2k in a graph G, and L-k(G) be the set of vertices of degree at most 2k - 2 in G. In 1963, Dirac and Erdos proved that G contains k (vertex) disjoint cycles whenever |H-k(G)| - |L-k(G)| >= k(2) + 2k - 4. The main result of this article is that for k >= 2, every graph G with |V(G)| >= 3k containing at most t disjoint triangles and with |H-k(G)| - |L-k(G)| >= 2k + t contains k disjoint cycles. This yields that if k >= 2 and |H-k(G)| - |L-k(G)| >= 3k, then G contains k disjoint cycles. This generalizes the Corradi-Hajnal Theorem, which states that every graph G with H-k(G) = V(G) and |H-k(G)| >= 3k contains k disjoint cycles. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:788 / 802
页数:15
相关论文
共 15 条
  • [1] Minimum degree conditions for vertex-disjoint even cycles in large graphs
    Chiba, Shuya
    Fujita, Shinya
    Kawarabayashi, Ken-ichi
    Sakuma, Tadashi
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2014, 54 : 105 - 120
  • [2] Corradi K., 1963, Acta Math. Acad. Sci. Hung., V14, P423
  • [3] An Extension of the Hajnal-Szemeredi Theorem to Directed Graphs
    Czygrinow, Andrzej
    DeBiasio, Louis
    Kierstead, H. A.
    Molla, Theodore
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (05) : 754 - 773
  • [4] On directed versions of the Corradi-Hajnal corollary
    Czygrinow, Andrzej
    Kierstead, H. A.
    Molla, Theodore
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 42 : 1 - 14
  • [5] Dirac G., 1963, Acta Math. Acad. Sci. Hung., V14, P79
  • [6] Dirac GabrielA., 1963, Canad. Math. Bull, V6, P183
  • [7] On the existence of disjoint cycles in a graph
    Enomoto, H
    [J]. COMBINATORICA, 1998, 18 (04) : 487 - 492
  • [8] Hajnal A., 1969, COMBINATORIAL THEORY, V1970, P601
  • [9] Kierstead H., J COMBIN B IN PRESS
  • [10] Kierstead H., ABH MATH SE IN PRESS