On a cardinality-constrained transportation problem with market choice

被引:4
作者
Walter, Matthias [1 ]
Damci-Kurt, Pelin [2 ]
Dey, Santanu S. [3 ]
Kuecuekyavuz, Simge [2 ]
机构
[1] Univ Magdeburg, Inst Math Optimierung, D-39106 Magdeburg, Germany
[2] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Transportation problem with market choice; Cardinality constraint; Integral polytope;
D O I
10.1016/j.orl.2015.12.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is well-known that the intersection of the matching polytope with a cardinality constraint is integral (Schrijver, 2003) [8]. In this note, we prove a similar result for the polytope corresponding to the transportation problem with market choice (TPMC) (introduced in Damci-Kurt et al. (2015)) when the demands are in the set {1, 2}. This result generalizes the result regarding the matching polytope. The result in this note implies that some special classes of minimum weight perfect matching problem with a cardinality constraint on a subset of edges can be solved in polynomial time. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 173
页数:4
相关论文
共 50 条
  • [31] A comparative study of heuristic methods for cardinality constrained portfolio optimization
    Fu, Lei
    Li, Jun
    Pu, Shanwen
    HIGH-CONFIDENCE COMPUTING, 2023, 3 (01):
  • [32] On-line algorithms for cardinality constrained bin packing problems
    Babel, L
    Chen, B
    Kellerer, H
    Kotov, V
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2001, 2223 : 695 - 706
  • [33] Polyhedral results for a class of cardinality constrained submodular minimization problems
    Yu, Jiajin
    Ahmed, Shabbir
    DISCRETE OPTIMIZATION, 2017, 24 : 87 - 102
  • [34] An Efficient Global Optimal Method for Cardinality Constrained Portfolio Optimization
    Xu, Wei
    Tang, Jie
    Yiu, Ka Fai Cedric
    Peng, Jian Wen
    INFORMS JOURNAL ON COMPUTING, 2024, 36 (02) : 690 - 704
  • [35] An exact algorithm for small-cardinality constrained portfolio optimisation
    Graham, David I.
    Craven, Matthew J.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2021, 72 (06) : 1415 - 1431
  • [36] On the implication problem for cardinality constraints and functional dependencies
    Sven Hartmann
    Annals of Mathematics and Artificial Intelligence, 2001, 33 : 253 - 307
  • [38] Enhancing an existing algorithm for small-cardinality constrained portfolio optimisation
    Phelps, Nathan
    Metzler, Adam
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2024, 75 (05) : 967 - 981
  • [39] REFORMULATIONS FOR PROJECT PORTFOLIO SELECTION PROBLEM CONSIDERING INTERDEPENDENCE AND CARDINALITY
    Li, Xingmei
    Huang, Yao-Huei
    Fang, Shu-Cherng
    Deng, Zhibin
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (02): : 355 - 366
  • [40] Exact penalization for cardinality and rank-constrained optimization problems via partial regularization
    Lu, Zhaosong
    Li, Xiaorui
    Xiang, Shuhuang
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (02) : 412 - 433