On a cardinality-constrained transportation problem with market choice

被引:4
作者
Walter, Matthias [1 ]
Damci-Kurt, Pelin [2 ]
Dey, Santanu S. [3 ]
Kuecuekyavuz, Simge [2 ]
机构
[1] Univ Magdeburg, Inst Math Optimierung, D-39106 Magdeburg, Germany
[2] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Transportation problem with market choice; Cardinality constraint; Integral polytope;
D O I
10.1016/j.orl.2015.12.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is well-known that the intersection of the matching polytope with a cardinality constraint is integral (Schrijver, 2003) [8]. In this note, we prove a similar result for the polytope corresponding to the transportation problem with market choice (TPMC) (introduced in Damci-Kurt et al. (2015)) when the demands are in the set {1, 2}. This result generalizes the result regarding the matching polytope. The result in this note implies that some special classes of minimum weight perfect matching problem with a cardinality constraint on a subset of edges can be solved in polynomial time. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 173
页数:4
相关论文
共 50 条
  • [21] Robust optimization framework for cardinality constrained portfolio problem
    Sadjadi, Seyed Jafar
    Gharakhani, Mohsen
    Safari, Ehram
    APPLIED SOFT COMPUTING, 2012, 12 (01) : 91 - 99
  • [22] Extended formulations for the cardinality constrained subtree of a tree problem
    Agra, A.
    Gouveia, L.
    Requejo, C.
    OPERATIONS RESEARCH LETTERS, 2009, 37 (03) : 192 - 196
  • [23] Heuristic Algorithms and Scatter Search for the Cardinality Constrained P||Cmax Problem
    Mauro Dell'Amico
    Manuel Iori
    Silvano Martello
    Journal of Heuristics, 2004, 10 : 169 - 204
  • [24] Heuristic algorithms and scatter search for the cardinality constrained P∥Cmax problem
    Dell'Amico, M
    Iori, M
    Martello, S
    JOURNAL OF HEURISTICS, 2004, 10 (02) : 169 - 204
  • [25] Cardinality constrained and multicriteria (multi)cut problems
    Bentz, C.
    Costa, M. -C.
    Derhy, N.
    Roupin, F.
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (01) : 102 - 111
  • [26] A Mayfly algorithm for cardinality constrained portfolio optimization
    Zheng, Xuanyu
    Zhang, Changsheng
    Zhang, Bin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [27] Cardinality Constrained Portfolio Optimization on an Ising Machine
    Parizy, Matthieu
    Sadowski, Przemyslaw
    Togawa, Nozomu
    2022 IEEE 35TH INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (IEEE SOCC 2022), 2022, : 136 - 141
  • [28] Time cardinality constrained mean-variance dynamic portfolio selection and market timing: A stochastic control approach
    Gao, Jianjun
    Li, Duan
    Cui, Xiangyu
    Wang, Shouyang
    AUTOMATICA, 2015, 54 : 91 - 99
  • [29] On cardinality constrained mean-CVaR portfolio optimization
    Cheng, Runze
    Gao, Jianjun
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1074 - 1079
  • [30] Cardinality Constrained Linear-Quadratic Optimal Control
    Gao, Jianjun
    Li, Duan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) : 1936 - 1941