On a cardinality-constrained transportation problem with market choice

被引:4
|
作者
Walter, Matthias [1 ]
Damci-Kurt, Pelin [2 ]
Dey, Santanu S. [3 ]
Kuecuekyavuz, Simge [2 ]
机构
[1] Univ Magdeburg, Inst Math Optimierung, D-39106 Magdeburg, Germany
[2] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Transportation problem with market choice; Cardinality constraint; Integral polytope;
D O I
10.1016/j.orl.2015.12.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is well-known that the intersection of the matching polytope with a cardinality constraint is integral (Schrijver, 2003) [8]. In this note, we prove a similar result for the polytope corresponding to the transportation problem with market choice (TPMC) (introduced in Damci-Kurt et al. (2015)) when the demands are in the set {1, 2}. This result generalizes the result regarding the matching polytope. The result in this note implies that some special classes of minimum weight perfect matching problem with a cardinality constraint on a subset of edges can be solved in polynomial time. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 173
页数:4
相关论文
共 50 条
  • [21] Reachability problems in interval-constrained and cardinality-constrained graphs
    Velasquez, Alvaro
    Subramani, K.
    Wojciechowski, Piotr
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (04)
  • [22] On the transportation problem with market choice
    Damci-Kurt, Pelin
    Dey, Santanu S.
    Kucukyavuz, Simge
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 54 - 77
  • [23] An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems
    Christian Kanzow
    Andreas B. Raharja
    Alexandra Schwartz
    Journal of Optimization Theory and Applications, 2021, 189 : 793 - 813
  • [24] Lagrangian relaxation procedure for cardinality-constrained portfolio optimization
    Shaw, Dong X.
    Liu, Shucheng
    Kopman, Leonid
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (03): : 411 - 420
  • [25] Cardinality-constrained programs with nonnegative variables and an SCA method
    Jiang, Zhongyi
    Wu, Baiyi
    Hu, Qiying
    Zheng, Xiaojin
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2022, 73 (03) : 634 - 652
  • [26] An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems
    Kanzow, Christian
    Raharja, Andreas B.
    Schwartz, Alexandra
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (03) : 793 - 813
  • [27] A cardinality-constrained approach for robust machine loading problems
    Lugaresi, Giovanni
    Lanzarone, Ettore
    Frigerio, Nicola
    Matta, Andrea
    27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 1718 - 1725
  • [28] Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems
    Lapucci, Matteo
    Levato, Tommaso
    Sciandrone, Marco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (02) : 473 - 496
  • [29] Identifying the cardinality-constrained critical nodes with a hybrid evolutionary algorithm
    Liu, Chanjuan
    Ge, Shike
    Zhang, Yuanke
    INFORMATION SCIENCES, 2023, 642
  • [30] Sequential optimality conditions for cardinality-constrained optimization problems with applications
    Kanzow, Christian
    Raharja, Andreas B.
    Schwartz, Alexandra
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 80 (01) : 185 - 211