On a cardinality-constrained transportation problem with market choice

被引:4
作者
Walter, Matthias [1 ]
Damci-Kurt, Pelin [2 ]
Dey, Santanu S. [3 ]
Kuecuekyavuz, Simge [2 ]
机构
[1] Univ Magdeburg, Inst Math Optimierung, D-39106 Magdeburg, Germany
[2] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Transportation problem with market choice; Cardinality constraint; Integral polytope;
D O I
10.1016/j.orl.2015.12.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is well-known that the intersection of the matching polytope with a cardinality constraint is integral (Schrijver, 2003) [8]. In this note, we prove a similar result for the polytope corresponding to the transportation problem with market choice (TPMC) (introduced in Damci-Kurt et al. (2015)) when the demands are in the set {1, 2}. This result generalizes the result regarding the matching polytope. The result in this note implies that some special classes of minimum weight perfect matching problem with a cardinality constraint on a subset of edges can be solved in polynomial time. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 173
页数:4
相关论文
共 50 条
  • [1] An efficient optimization approach for a cardinality-constrained index tracking problem
    Xu, Fengmin
    Lu, Zhaosong
    Xu, Zongben
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02) : 258 - 271
  • [2] Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems
    Lapucci, Matteo
    Levato, Tommaso
    Sciandrone, Marco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (02) : 473 - 496
  • [3] An application of a cardinality-constrained multiple benchmark tracking error model on a plant enterprise selection problem
    Ma, Qiuzhuo
    Paudel, Krishna P.
    Gu, Liting
    Wen, Xiaowei
    EUROPEAN REVIEW OF AGRICULTURAL ECONOMICS, 2018, 45 (05) : 1 - 45
  • [4] Cardinality-constrained portfolio selection based on collaborative neurodynamic optimization
    Leung, Man-Fai
    Wang, Jun
    NEURAL NETWORKS, 2022, 145 : 68 - 79
  • [5] Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems
    Matteo Lapucci
    Tommaso Levato
    Marco Sciandrone
    Journal of Optimization Theory and Applications, 2021, 188 : 473 - 496
  • [6] Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming
    Lili Pan
    Ziyan Luo
    Naihua Xiu
    Journal of Optimization Theory and Applications, 2017, 175 : 104 - 118
  • [7] Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming
    Pan, Lili
    Luo, Ziyan
    Xiu, Naihua
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 175 (01) : 104 - 118
  • [8] A Modifiedk-Means Clustering Procedure for Obtaining a Cardinality-Constrained Centroid Matrix
    Yamashita, Naoto
    Adachi, Kohei
    JOURNAL OF CLASSIFICATION, 2020, 37 (02) : 509 - 525
  • [9] Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems
    Cui, X. T.
    Zheng, X. J.
    Zhu, S. S.
    Sun, X. L.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1409 - 1423
  • [10] Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems
    X. T. Cui
    X. J. Zheng
    S. S. Zhu
    X. L. Sun
    Journal of Global Optimization, 2013, 56 : 1409 - 1423