STABILITY AND HOPF BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY

被引:51
作者
Adimy, Mostafa [1 ]
Crauste, Fabien [2 ]
Lhassan Hbid, My [3 ]
Qesmi, Redouane [4 ]
机构
[1] INRIA Rhone Alpes, Inst Camille Jordan UMR 5208, F-69622 Villeurbanne, France
[2] Univ Lyon 1, CNRS, Inst Camille Jordan UMR 5208, F-69222 Villeurbanne, France
[3] Cadi Ayyad Univ, Fac Sci Semlalia, Dept Math, Marrakech, Morocco
[4] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
关键词
hematopoietic stem cells; functional differential equation; state-dependent delay; Lyapunov-Razumikhin function; Hopf bifurcation; CHRONIC MYELOGENOUS LEUKEMIA; FUNCTIONAL-DIFFERENTIAL EQUATIONS; HEMATOPOIETIC STEM-CELLS; PERIODIC-SOLUTIONS; MATHEMATICAL-MODEL; GLOBAL STABILITY; DISTRIBUTED DELAY; PROLIFERATION; DYNAMICS; REPLICATION;
D O I
10.1137/080742713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a mathematical model describing the dynamics of a hematopoietic stem cell population. The method of characteristics reduces the age-structured model to a system of differential equations with a state-dependent delay. A detailed stability analysis is performed. A sufficient condition for the global asymptotic stability of the trivial steady state is obtained using a Lyapunov-Razumikhin function. A unique positive steady state is shown to appear through a transcritical bifurcation of the trivial steady state. The analysis of the positive steady state behavior, through the study of a first order exponential polynomial characteristic equation, concludes the existence of a Hopf bifurcation and gives criteria for stability switches. A numerical analysis confirms the results and stresses the role of each parameter involved in the system on the stability of the positive steady state.
引用
收藏
页码:1611 / 1633
页数:23
相关论文
共 61 条
[1]   Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics [J].
Adimy, M ;
Crauste, F ;
Ruan, SG .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (04) :651-670
[2]   A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia [J].
Adimy, M ;
Crauste, F ;
Ruan, SG .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (04) :1328-1352
[3]   Existence, positivity and stability for a nonlinear model of cellular proliferation [J].
Adimy, M ;
Crauste, F .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (02) :337-366
[4]  
Adimy M, 2005, DISCRETE CONT DYN-A, V12, P501
[5]   Global stability of a partial differential equation with distributed delay due to cellular replication [J].
Adimy, M ;
Crauste, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (08) :1469-1491
[6]   Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations [J].
Adimy, M. ;
Crauste, F. .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (11-12) :2128-2137
[7]   A singular transport model describing cellular division [J].
Adimy, M ;
Pujo-Menjouet, L .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (12) :1071-1076
[8]  
Adimy M., 2003, ELECTRON J DIFFER EQ, V107, P1
[9]   ANALYSIS OF A MODEL REPRESENTING STAGE-STRUCTURED POPULATION-GROWTH WITH STATE-DEPENDENT TIME-DELAY [J].
AIELLO, WG ;
FREEDMAN, HI ;
WU, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (03) :855-869
[10]   Modelling cell growth and its modulation of the G1/S transition [J].
Alarcon, T. ;
Tindall, M. J. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (01) :197-214