Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under Taylor flow regime

被引:18
|
作者
Huang, Mengmeng [1 ]
Zhu, Chunying [1 ]
Fu, Taotao [1 ]
Ma, Youguang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanofluids; Silicon dioxide particles; Mass transfer enhancement; Gas-liquid two-phase flow; Microchannel; SOLID MICROREACTOR; SEGMENTED FLOW; SLUG FLOW; CHEMICAL-REACTION; CO2; ABSORPTION; PARTICLES; BUBBLE; PERFORMANCE; CARBON; SLURRY;
D O I
10.1016/j.ijheatmasstransfer.2021.121435
中图分类号
O414.1 [热力学];
学科分类号
摘要
The gas-liquid two-phase flow and the enhancement of mass transfer by nanoparticles for the process of CO2 absorbed by SiO2 nanofluids were investigated in a microchannel under Taylor flow regime. The influences of the dispersed and continuous phase flow rates and particle concentration in slurry on liquid side volumetric mass transfer coefficient (K(L)a), mass transfer enhancement factor (E), CO2 absorption efficiency, and pressure drop were studied systematically. The results show that the presence of nanoparticles can effectively enhance the gas-liquid mass transfer. Both K(L)a and pressure drop increase, while the CO2 absorption efficiency decreases with increasing the gas-liquid flow rate ratio. Differently, K(L)a, CO2 absorption efficiency and pressure drop increase with the increase of particle concentration in slurry. Considering the energy consumption and mass transfer enhancement effect, the effective mass transfer enhancement efficiency is in the range of 1.2 similar to 2.4, which shows the excellent enhancement performance of nanoparticles on gas-liquid mass transfer. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels
    Zhang, Peng
    Yao, Chaoqun
    Ma, Haiyun
    Jin, Nan
    Zhang, Xunli
    Lu, Hongying
    Zhao, Yuchao
    CHEMICAL ENGINEERING SCIENCE, 2018, 182 : 17 - 27
  • [32] Intensification of gas-liquid two-phase flow and mass transfer in microchannels by sudden expansions
    Zhang, Shizhe
    Zhu, Chunying
    Feng, Huisheng
    Fu, Taotao
    Ma, Youguang
    CHEMICAL ENGINEERING SCIENCE, 2021, 229 (229)
  • [33] INVESTIGATIONS OF MASS TRANSFER IN ANNULAR GAS-LIQUID FLOW IN A MICROREACTOR
    Sobieszuk, Pawel
    Napieralska, Karolina
    CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2016, 37 (01): : 55 - 64
  • [34] Study on gas-liquid mass transfer characteristics in microchannel with array bulges
    He W.
    Chen Y.
    Zhu C.
    Fu T.
    Gao X.
    Ma Y.
    Huagong Xuebao/CIESC Journal, 2023, 74 (02): : 690 - 697
  • [35] Mass transfer rate in gas-liquid Taylor flow: Sherwood numbers from numerical simulations
    Albrand, Pierre
    Lalanne, Benjamin
    CHEMICAL ENGINEERING SCIENCE, 2023, 280
  • [36] Transient simulation of oscillatory gas-liquid Taylor flow and its effects on heat transfer
    Tao, Hai
    Zheng, Zhanying
    Gupta, Raghvendra
    Leung, Sharon Shui Yee
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 222
  • [37] Hydrodynamics and Mass Transfer of Gas-Liquid Flow in a Failing Film Microreactor
    Zhang, Haocui
    Chen, Guangwen
    Yue, Jun
    Yuan, Quan
    AICHE JOURNAL, 2009, 55 (05) : 1110 - 1120
  • [38] Modeling investigation of mass transfer of gas-liquid concurrent flow processes
    Tan, J.
    Lu, Y. C.
    Xu, J. H.
    Luo, G. S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2013, 109 : 77 - 86
  • [39] Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors
    Dong, Zhengya
    Yao, Chaoqun
    Zhang, Yuchao
    Chen, Guangwen
    Yuan, Quan
    Xu, Jie
    AICHE JOURNAL, 2016, 62 (04) : 1294 - 1307
  • [40] FLOW AND HEAT TRANSFER ENHANCEMENT OF NANOFLUIDS IN MICROCHANNEL WITH BLOCKS AND GROOVES
    Li, Ping
    Chen, Jianhui
    Qu, Huancheng
    Xie, Yonghui
    Zhang, Di
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2013, VOL 1B: SYMPOSIA, 2014,