Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under Taylor flow regime

被引:18
|
作者
Huang, Mengmeng [1 ]
Zhu, Chunying [1 ]
Fu, Taotao [1 ]
Ma, Youguang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanofluids; Silicon dioxide particles; Mass transfer enhancement; Gas-liquid two-phase flow; Microchannel; SOLID MICROREACTOR; SEGMENTED FLOW; SLUG FLOW; CHEMICAL-REACTION; CO2; ABSORPTION; PARTICLES; BUBBLE; PERFORMANCE; CARBON; SLURRY;
D O I
10.1016/j.ijheatmasstransfer.2021.121435
中图分类号
O414.1 [热力学];
学科分类号
摘要
The gas-liquid two-phase flow and the enhancement of mass transfer by nanoparticles for the process of CO2 absorbed by SiO2 nanofluids were investigated in a microchannel under Taylor flow regime. The influences of the dispersed and continuous phase flow rates and particle concentration in slurry on liquid side volumetric mass transfer coefficient (K(L)a), mass transfer enhancement factor (E), CO2 absorption efficiency, and pressure drop were studied systematically. The results show that the presence of nanoparticles can effectively enhance the gas-liquid mass transfer. Both K(L)a and pressure drop increase, while the CO2 absorption efficiency decreases with increasing the gas-liquid flow rate ratio. Differently, K(L)a, CO2 absorption efficiency and pressure drop increase with the increase of particle concentration in slurry. Considering the energy consumption and mass transfer enhancement effect, the effective mass transfer enhancement efficiency is in the range of 1.2 similar to 2.4, which shows the excellent enhancement performance of nanoparticles on gas-liquid mass transfer. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Mass transfer of gas-liquid two-phase flow in asymmetric parallel microchannels with liquid feed splitting
    Huang, Zien
    Xiang, Xingyu
    Jiang, Bin
    Zhu, Chunying
    Cui, Xianbao
    Ma, Youguang
    Fu, Taotao
    AICHE JOURNAL, 2024,
  • [22] Mass transfer in liquid-liquid Taylor flow in a microchannel: Local concentration distribution, mass transfer regime and the effect of fluid viscosity
    Yao, Chaoqun
    Ma, Haiyun
    Zhao, Qiankun
    Liu, Yanyan
    Zhao, Yuchao
    Chen, Guangwen
    CHEMICAL ENGINEERING SCIENCE, 2020, 223
  • [23] The effect of liquid viscosity and modeling of mass transfer in gas-liquid slug flow in a rectangular microchannel
    Yao, Chaoqun
    Zhao, Yuchao
    Zheng, Jia
    Zhang, Qi
    Chen, Guangwen
    AICHE JOURNAL, 2020, 66 (05)
  • [24] An experimental investigation on characteristics of liquid film thickness of gas-liquid Taylor flow in square/rectangular microchannel applied in microreactor
    Fu, Dengwei
    Hu, Yifei
    Li, Zhaoyu
    Dang, Chaobin
    Hong, Sihui
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 234
  • [25] GAS-LIQUID MASS-TRANSFER IN TAYLOR FLOW THROUGH A CAPILLARY
    IRANDOUST, S
    ERTLE, S
    ANDERSSON, B
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1992, 70 (01) : 115 - 119
  • [26] Numerical study on pressure drop and heat transfer characteristics of gas-liquid Taylor flow in a microchannel based on FFR method
    Wang, Changliang
    Tian, Maocheng
    Zhang, Jingzhi
    Zhang, Guanmin
    Zhang, Yi
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 117
  • [27] Numerical investigation of gas-liquid and liquid-liquid Taylor flow through a circular microchannel with a sudden expansion
    Etminan, Amin
    Muzychka, Yuri S.
    Pope, Kevin
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (07) : 1596 - 1612
  • [28] Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles
    Yin, Yaran
    Guo, Rongwei
    Zhu, Chunying
    Fu, Taotao
    Ma, Youguang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 236
  • [29] Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow
    Haase, Stefan
    Murzin, Dmitry Yu.
    Salmi, Tapio
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 113 : 304 - 329
  • [30] Gas-liquid mass transfer and intensification in 3D-rhombus microchannel
    Chen Y.
    Zhu C.
    Fu T.
    Ma Y.
    Huagong Xuebao/CIESC Journal, 2022, 73 (01): : 175 - 183