Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries

被引:42
|
作者
Zhao, Junkai [1 ,2 ]
Wei, Daina [1 ,2 ]
Wang, Jianjun [1 ]
Yang, Kaimeng [1 ]
Wang, Zhaolong [3 ]
Chen, Zhengjian [4 ]
Zhang, Shiguo [5 ]
Zhang, Ce [2 ]
Yang, Xiaojing [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] China Acad Space Technol CAST, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[3] Hunan Univ, Coll Mech & Vehicle Engn, Interdisciplinary Res Ctr Low carbon Technol & Equ, Changsha 410082, Peoples R China
[4] Zhuhai Inst Adv Technol, Chinese Acad Sci, Biomat R&D Ctr, Zhuhai 519003, Peoples R China
[5] Hunan Univ, Coll Mat Sci & Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Peoples R China
关键词
Si-based anode; Self-healing; Supramolecular; Cycle stability; Lithium-ion battery; POLYMER; ACID; SI; NANOSHEETS; ALCOHOL;
D O I
10.1016/j.jcis.2022.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capacity retention is one of the key factors affecting the performance of silicon (Si)-based lithium-ion batteries and other energy storage devices. Herein, a three dimension (3D) network self-healing binder (denoted as PVA + LB) consisting of polyvinyl alcohol (PVA) and lithium metaborate (LiBO2) solution is proposed to improve the cycle stability of Si-based lithium-ion batteries. The reversible capacity of the silicon electrode is maintained at 1767.3 mAh g(-1) after 180 cycles when employing PVA + LB as the bin-der, exhibiting excellent cycling stability. In addition, the silicon/carbon (Si/C) anode with the PVA + LB binder presents superior electrochemical performance, achieving a stable cycle life with a capacity reten-tion of 73.7% (858.3 mAh g(-1)) after 800 cycles at a current density of 1 A g(-1). The high viscosity and flex-ibility, 3D network structure, and self-healing characteristics of the PVA + LB binder are the main reasons to improve the stability of the Si or Si/C contained electrodes. The novel self-healing binder shows great potential in designing the new generation of silicon-based lithium-ion batteries and even electrochemical energy storage devices.(C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:373 / 382
页数:10
相关论文
共 50 条
  • [21] Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries
    Li, Juanjuan
    Zhang, Guangzhao
    Yang, Yu
    Yao, Dahua
    Lei, Zhiwen
    Li, Shuai
    Deng, Yonghong
    Wang, Chaoyang
    JOURNAL OF POWER SOURCES, 2018, 406 : 102 - 109
  • [22] Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries
    Cai, Yongjie
    Li, Yuanyuan
    Jin, Biyi
    Ali, Abid
    Ling, Min
    Cheng, Dangguo
    Lu, Jianguo
    Hou, Yang
    He, Qinggang
    Zhan, Xiaoli
    Chen, Fengqiu
    Zhang, Qinghua
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (50) : 46800 - 46807
  • [23] Epoxy and amide crosslinked polarity enhanced polysaccharides binder for silicon anode in lithium-ion batteries
    Wang, Hongxun
    Wei, Di
    Wan, Zhengwei
    Du, Qiaokun
    Zhang, Bao
    Ling, Min
    Liang, Chengdu
    ELECTROCHIMICA ACTA, 2021, 368
  • [24] Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries
    Wu, Shuai
    Di, Fang
    Zheng, Jin-gang
    Zhao, Hong-wei
    Zhang, Han
    Li, Li-xiang
    Geng, Xin
    Sun, Cheng-guo
    Yang, Hai-ming
    Zhou, Wei-min
    Ju, Dong-ying
    An, Bai-gang
    NEW CARBON MATERIALS, 2022, 37 (05) : 802 - 826
  • [25] A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries
    Hu, Xianchao
    Liang, Kang
    Li, Jianbin
    Ren, Yurong
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [26] Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries
    Bie, Yitian
    Yang, Jun
    Nuli, Yanna
    Wang, Jiulin
    RSC ADVANCES, 2016, 6 (99): : 97084 - 97088
  • [27] Self-Healing Liquid Metal and Si Composite as a High-Performance Anode for Lithium-Ion Batteries
    Wu, Yingpeng
    Huang, Xingkang
    Huang, Lu
    Guo, Xiaoru
    Ren, Ren
    Liu, Dan
    Qu, Deyang
    Chen, Junhong
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (04): : 1395 - 1399
  • [28] Crosslinked carboxymethyl cellulose-sodium borate hybrid binder for advanced silicon anodes in lithium-ion batteries
    Zhang, Li
    Ding, Yun
    Song, Jiangxuan
    CHINESE CHEMICAL LETTERS, 2018, 29 (12) : 1773 - 1776
  • [29] High-Performance Carboxymethyl Cellulose Integrating Polydopamine Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries
    Ma, Lei
    Fu, Xiaomeng
    Zhao, Fangfang
    Su, Wenda
    Yu, Liming
    Lu, Cheng
    Wei, Liangming
    Tang, Gen
    Wang, Yue
    Guo, Xiang
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (03) : 1714 - 1722
  • [30] Novel conductive binder for high-performance silicon anodes in lithium ion batteries
    Liu, Dong
    Zhao, Yan
    Tan, Rui
    Tian, Lei-Lei
    Liu, Yidong
    Chen, Haibiao
    Pan, Feng
    NANO ENERGY, 2017, 36 : 206 - 212