Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane

被引:185
作者
Zhang, Jin [1 ,2 ,3 ]
Bai, Hui-Juan [4 ]
Ren, Qiu [1 ,2 ,3 ]
Luo, Hong-Bin [1 ,2 ,3 ]
Ren, Xiao-Ming [1 ,2 ,3 ]
Tian, Zheng-Fang [5 ]
Lu, Shanfu [4 ]
机构
[1] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Coll Chem & Mol Engn, Nanjing 210009, Jiangsu, Peoples R China
[3] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[4] Beihang Univ, Sch Chem & Environm, Beijing Key Lab Bioinspired Energy Mat & Devices, Beijing 100191, Peoples R China
[5] Huanggang Normal Univ, Hubei Key Lab Proc & Applicat Catalyt Mat, Huanggang 438000, Peoples R China
关键词
metal-organic frameworks; MOF-polymer composite membrane; proton-exchange membrane; chemical stability; proton conductivity; METAL-ORGANIC FRAMEWORKS; POLYMER ELECTROLYTE MEMBRANES; FUEL-CELL APPLICATIONS; SUPERPROTONIC CONDUCTIVITY; COORDINATION POLYMER; TEMPERATURE-RANGE; HYBRID MEMBRANES; LOW-HUMIDITY; CONDUCTORS; TRANSPORT;
D O I
10.1021/acsami.8b09070
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Proton-exchange membranes (PEMs), characterized by selectively permitting the transfer of protons and acting as a separator in electrochemical devices, have attracted immense attention. The composite membrane, fabricated from organic polymer matrix and high proton-conducting metal-organic framework (MOF), integrates the excellent physical and chemical performances of the polymer and MOF, achieving collective properties for good-performance PEMs. In this study, we demonstrate that MOF-801 shows remarkable proton conductance with sigma = 1.88 X 10(-3) S cm(-1) at 298 K and 98% relative humidity (RH), specifically, together with extra stability to hydrochloric acid or diluting sodium hydroxide aqueous solutions and boiling water. Furthermore, the composite membranes (denoted MOF-801@PP-X, where X represents the mass percentage of MOF-801 in the membrane) have been fabricated using the sub-micrometer-scale crystalline particles of MOF-801 and blending the poly(vinylidene fluoride)-poly(vinylpyrrolidone) matrix, and these PEMs display high proton conductivity, with sigma = 1.84 X 10(-3) S cm(-1) at 325 K 98% RH. A composite membrane as PEM was assembled into H-2/O-2 fuel cell for tests, indicating that these membrane materials have vast potential for PEM application on electrochemical devices.
引用
收藏
页码:28656 / 28663
页数:8
相关论文
共 61 条
[1]   Solid state protonic conductors, present main applications and future prospects [J].
Alberti, G ;
Casciola, M .
SOLID STATE IONICS, 2001, 145 (1-4) :3-16
[2]   Proton conductive metal phosphonate frameworks [J].
Bao, Song-Song ;
Shimizu, George K. H. ;
Zheng, Li-Min .
COORDINATION CHEMISTRY REVIEWS, 2019, 378 :577-594
[3]   Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways [J].
Chen, Pingping ;
Hao, Lie ;
Wu, Wenjia ;
Li, Yifan ;
Wang, Jingtao .
ELECTROCHIMICA ACTA, 2016, 212 :426-439
[4]   Durability and degradation issues of PEM fuel cell components [J].
de Bruijn, F. A. ;
Dam, V. A. T. ;
Janssen, G. J. M. .
FUEL CELLS, 2008, 8 (01) :3-22
[5]   Tuning the functional substituent group and guest of metal-organic frameworks in hybrid membranes for improved interface compatibility and proton conduction [J].
Dong, Xi-Yan ;
Li, Jing-Juan ;
Han, Zhen ;
Duan, Pei-Gao ;
Li, Lin-Ke ;
Zang, Shuang-Quan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) :3464-3474
[6]   Alkaline Earth Metal (Mg, Sr, Ba)-Organic Frameworks Based on 2,2′,6,6′-Tetracarboxybiphenyl for Proton Conduction [J].
Dong, Xi-Yan ;
Hu, Xiao-Peng ;
Yao, Hong-Chang ;
Zang, Shuang-Quan ;
Hou, Hong-Wei ;
Mak, Thomas C. W. .
INORGANIC CHEMISTRY, 2014, 53 (22) :12050-12057
[7]   A Layered Mixed Zirconium Phosphate/Phosphonate with Exposed Carboxylic and Phosphonic Groups: X-ray Powder Structure and Proton Conductivity Properties [J].
Donnadio, Anna ;
Nocchetti, Morena ;
Costantino, Ferdinando ;
Taddei, Marco ;
Casciola, Mario ;
Lisboa, Fabio da Silva ;
Vivani, Riccardo .
INORGANIC CHEMISTRY, 2014, 53 (24) :13220-13226
[8]   Water Adsorption in Porous Metal-Organic Frameworks and Related Materials [J].
Furukawa, Hiroyasu ;
Gandara, Felipe ;
Zhang, Yue-Biao ;
Jiang, Juncong ;
Queen, Wendy L. ;
Hudson, Matthew R. ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (11) :4369-4381
[9]   Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity [J].
Gui, Daxiang ;
Dai, Xing ;
Tao, Zetian ;
Zheng, Tao ;
Wang, Xiangxiang ;
Silver, Mark A. ;
Shu, Jie ;
Chen, Lanhua ;
Wang, Yanlong ;
Zhang, Tiantian ;
Xie, Jian ;
Zou, Lin ;
Xia, Yuanhua ;
Zhang, Jujia ;
Zhang, Jin ;
Zhao, Ling ;
Diwu, Juan ;
Zhou, Ruhong ;
Chai, Zhifang ;
Wang, Shuao .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (19) :6146-6155
[10]   New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF-PVP blended polymers [J].
Guo, Zhibin ;
Xu, Xin ;
Xiang, Yan ;
Lu, Shanfu ;
Jiang, San Ping .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (01) :148-155