Pleurotus Ostreatus Ameliorates Obesity by Modulating the Gut Microbiota in Obese Mice Induced by High-Fat Diet

被引:28
|
作者
Hu, Yanzhou [1 ]
Xu, Jia [1 ]
Sheng, Yao [1 ]
Liu, Junyu [1 ]
Li, Haoyu [1 ]
Guo, Mingzhang [1 ]
Xu, Wentao [2 ,3 ]
Luo, Yunbo [1 ,3 ]
Huang, Kunlun [1 ,3 ]
He, Xiaoyun [1 ,3 ]
机构
[1] China Agr Univ, Coll Food Sci & Nutrit Engn, Key Lab Precis Nutr & Food Qual, Key Lab Funct Dairy,Minist Educ, Beijing 100083, Peoples R China
[2] China Agr Univ, Dept Nutr & Hlth, Key Lab Precis Nutr & Food Qual, Beijing 100083, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Safety Assessment Genetically Modified Or, Beijing 100083, Peoples R China
关键词
Pleurotus Ostreatus; obesity; gut microbiota; 16S rRNA gene; PICRUSt algorithm; INSULIN-RESISTANCE; ETHANOLIC EXTRACT; OYSTER MUSHROOM; WEIGHT-GAIN; ACIDS;
D O I
10.3390/nu14091868
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Pleurotus ostreatus (PO), a common edible mushroom, contains rich nutritional components with medicinal properties. To explore the effect of PO on ameliorating obesity and modulating the gut microbiota, we administered the mice with a low-fat diet or high-fat diet containing different dosages of PO (mass fraction: 0%, 2.5%, 5% and 10%). The body weight, adipose tissue weight, GTT, ITT, blood lipids, serum biomarkers of liver/kidney function, the gut microbiota and function were measured and analyzed after 6 weeks of PO treatment. The results showed PO prevented obesity, maintained glucose homeostasis and beneficially modulated gut microbiota. PO modified the composition and functions of gut microbiota in obese mice and make them similar to those in lean mice, which contributed to weight loss. PO significantly increased the relative abundance of Oscillospira, Lactobacillus group and Bifidobacterium, while decreased the relative abundance of Bacteroides and Roseburia. The prediction of gut microbiota function showed PO upregulated lipid metabolism, carbohydrate metabolism, bile acid biosynthesis, while it downregulated adipocytokine signaling pathway and steroid hormone biosynthesis. Correlation analysis further suggested the potential relationship among obesity, gut microbiota and the function of gut microbiota. In conclusion, all the results indicated that PO ameliorated obesity at least partly by modulating the gut microbiota.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Orlistat and ezetimibe could differently alleviate the high-fat diet-induced obesity phenotype by modulating the gut microbiota
    Jin, Jin
    Wang, Jiani
    Cheng, Ruyue
    Ren, Yan
    Miao, Zhonghua
    Luo, Yating
    Zhou, Qingqing
    Xue, Yigui
    Shen, Xi
    He, Fang
    Tian, Haoming
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [22] Daily Supplementation with Fresh Angelica keiskei Juice Alleviates High-Fat Diet-Induced Obesity in Mice by Modulating Gut Microbiota Composition
    Zhang, Chengcheng
    Wu, Weicheng
    Li, Xiaoqiong
    Xin, Xiaoting
    Liu, Daqun
    MOLECULAR NUTRITION & FOOD RESEARCH, 2019, 63 (14)
  • [23] High-dose thiamine supplementation ameliorates obesity induced by a high-fat and high-fructose diet in mice by reshaping gut microbiota
    Xia, Yu
    Wang, Lulu
    Qiu, Yanyan
    Ge, Weihong
    FRONTIERS IN NUTRITION, 2025, 12
  • [24] Propionate alleviates high-fat diet-induced lipid dysmetabolism by modulating gut microbiota in mice
    Song, B.
    Zhong, Y. Z.
    Zheng, C. B.
    Li, F. N.
    Duan, Y. H.
    Deng, J. P.
    JOURNAL OF APPLIED MICROBIOLOGY, 2019, 127 (05) : 1546 - 1555
  • [25] Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice
    Zhao, Qingyu
    Hou, Dianzhi
    Fu, Yongxia
    Xue, Yong
    Guan, Xiao
    Shen, Qun
    NUTRIENTS, 2021, 13 (09)
  • [26] Vaccinium bracteatum Thunb. fruit extract reduces high-fat diet-induced obesity with modulation of the gut microbiota in obese mice
    Song, Haizhao
    Shen, Xinchun
    Chu, Qiang
    Zheng, Xiaodong
    JOURNAL OF FOOD BIOCHEMISTRY, 2021, 45 (07)
  • [27] Propionylated high-amylose maize starch alleviates obesity by modulating gut microbiota in high-fat diet-fed mice
    Xie, Zhuqing
    Yao, Minghua
    Castro-Mejia, Josue L.
    Ma, Ming
    Zhu, Yuyan
    Fu, Xiong
    Huang, Qiang
    Zhang, Bin
    JOURNAL OF FUNCTIONAL FOODS, 2023, 102
  • [28] Konjac supplementation can alleviate obesity induced by high-fat diet in mice by modulating gut microbiota and its metabolites
    Wen, Yuhang
    Chen, Baoting
    Huang, Jingrong
    Luo, Yadan
    Lv, Shuya
    Qiu, Hao
    Li, Shuaibing
    Liu, Songwei
    He, Lvqin
    He, Manli
    Yu, Zehui
    Zhao, Mingde
    Yang, Qian
    Li, Dong
    Gu, Congwei
    CURRENT RESEARCH IN FOOD SCIENCE, 2024, 9
  • [29] Tea Polyphenols Reduced Obesity by Modulating Gut Microbiota-SCFAs-Barrier and Inflammation in High-Fat Diet-Induced Mice
    Tian, Baoming
    Huang, Pinjiao
    Pan, Yizhu
    Gu, Hong
    Yang, Kai
    Wei, Zhengxun
    Zhang, Xiangchun
    MOLECULAR NUTRITION & FOOD RESEARCH, 2024, 68 (24)
  • [30] The monomer of resveratrol butyrate ester ameliorates obesity and gut microbiota in high-fat diet rats
    Chen, Yu -Wei
    Liu, Rou-Yun
    Shih, Ming-Kuei
    Lin, Wen -Wei
    Cheng, Chiu-Min
    Hsieh, Chang -Wei
    Hou, Chih-Yao
    Chen, Shin-Yu
    JOURNAL OF FUNCTIONAL FOODS, 2024, 118