Mesoscopic Lattice Boltzmann Modeling of the Liquid-Vapor Phase Transition

被引:41
作者
Huang, Rongzong [1 ]
Wu, Huiying [2 ]
Adams, Nikolaus A. [3 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[3] Tech Univ Munich, Inst Aerodynam & Fluid Mech, D-85748 Garching, Germany
基金
中国国家自然科学基金;
关键词
EQUATION-OF-STATE; GALILEAN INVARIANCE; CAPILLARY CONDENSATION; HEAT-TRANSFER; SIMULATION;
D O I
10.1103/PhysRevLett.126.244501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a mesoscopic lattice Boltzmann model for liquid-vapor phase transition by handling the microscopic molecular interaction. The short-range molecular interaction is incorporated by recovering an equation of state for dense gases, and the long-range molecular interaction is mimicked by introducing a pairwise interaction force. Double distribution functions are employed, with the density distribution function for the mass and momentum conservation laws and an innovative total kinetic energy distribution function for the energy conservation law. The recovered mesomacroscopic governing equations are fully consistent with kinetic theory, and thermodynamic consistency is naturally satisfied.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Droplet deformation and heat transfer in isotropic turbulence [J].
Albernaz, Daniel L. ;
Do-Quang, M. ;
Hermanson, J. C. ;
Amberg, G. .
JOURNAL OF FLUID MECHANICS, 2017, 820 :61-85
[2]   Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICAL REVIEW LETTERS, 2009, 103 (18)
[3]   EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) :635-&
[4]  
Chapman S., 1952, MATH THEORY NONUNIFO
[5]  
Cheng Ping., 2014, ADV HEAT TRANSFER, V46, P187
[6]   Vapour-mediated sensing and motility in two-component droplets [J].
Cira, N. J. ;
Benusiglio, A. ;
Prakash, M. .
NATURE, 2015, 519 (7544) :446-+
[7]   Lattice Boltzmann algorithms without cubic defects in Galilean invariance on standard lattices [J].
Dellar, Paul J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 :270-283
[8]   THE KELVIN EQUATION AND THE CAPILLARY CONDENSATION OF WATER [J].
FISHER, LR ;
GAMBLE, RA ;
MIDDLEHURST, J .
NATURE, 1981, 290 (5807) :575-576
[9]   Fourth order Galilean invariance for the lattice Boltzmann method [J].
Geier, Martin ;
Pasquali, Andrea .
COMPUTERS & FLUIDS, 2018, 166 :139-151
[10]  
Godsave G.A. E., 1953, 4 S INT COMBUSTION, P818, DOI DOI 10.1016/S0082-0784(53)80107-4